期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第7期 doi: 10.1016/j.eng.2019.12.016

三维含孔洞结构的无需测速震源定位方法

a School of Resources and Safety Engineering, Central South University, Changsha 410083, China
b Department of Geophysics, Colorado School of Mines, Golden, CO 80401, USA

收稿日期: 2019-07-29 修回日期: 2019-11-15 录用日期: 2019-12-16 发布日期: 2020-01-11

下一篇 上一篇

摘要

微震/声发射震源定位方法可以对结构潜在危险源进行预测与控制。然而,现有的定位方法中,由不规则结构和预测速度引起的定位误差问题却没有得到很好的解决。为了实现复杂三维含孔结构的高精度定位要求,本文提出了一种三维含孔洞结构的无需测速震源定位方法。该算法采用等距网格点搜索路径,避免了人工重复训练。引入了A*搜索算法,并利用网格点来适应具有不规则孔洞的复杂结构。它还利用了无需预先测速的定位方法的优点。将尺寸为10 cm×10 cm×10 cm的立方体混凝土构件,掏出一个尺寸为Φ 6 cm×10 cm的圆柱形空区。在该构件上进行断铅试验,来验证新方法的有效性。根据到时,分别用经典的Geiger法和新方法进行定位计算。结果显示,新方法的定位误差为1.20 cm,远小于Geiger法的2.02 cm。这表明新方法可以在含孔洞的复杂三维结构中进行有效定位,并能达到较高的精度要求。

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Feng X, Liu J, Chen B, Xiao Y, Feng G, Zhang F. Monitoring, warning, and control of rockburst in deep metal mines. Engineering 2017;3(4):538–45. 链接1

[ 2 ] Milev AM, Spottiswoode SM, Rorke AJ, Finnie GJ. Seismic monitoring of a simulated rockburst on a wall of an underground tunnel. J South Afr Inst Min Metall 2001;101(5):253–60. 链接1

[ 3 ] Urbancic TI, Trifu C. Recent advances in seismic monitoring technology at Canadian mines. J Appl Geophys 2000;45(4):225–37. 链接1

[ 4 ] Wang H, Ge M. Acoustic emission/microseismic source location analysis for a limestone mine exhibiting high horizontal stresses. J Rock Mech Min Sci 2008;45(5):720–8. 链接1

[ 5 ] Hirata A, Kameoka Y, Hirano T. Safety management based on detection of possible rock bursts by AE monitoring during tunnel excavation. Rock Mech Rock Eng 2007;40(6):563–76. 链接1

[ 6 ] Li L, Tan J, Wood DA, Zhao Z, Becker D, Lyu Q, et al. A review of the current status of induced seismicity monitoring for hydraulic fracturing in unconventional tight oil and gas reservoirs. Fuel 2019;242:195–210. 链接1

[ 7 ] Ge M. Efficient mine microseismic monitoring. Int J Coal Geol 2005;64(1– 2):44–56. 链接1

[ 8 ] Durrheim RJ. Mitigating the risk of rockbursts in the deep hard rock mines of South Africa: 100 years of research. In: Extracting the science: a century of mining research. Denver: Society for Mining, Metallurgy, and Exploration, Inc.; 2010. p. 156–71.

[ 9 ] Park B, Sohn H, Olson SE, DeSimio MP, Brown KS, Derriso MM. Impact localization in complex structures using laser-based time reversal. Struct Health Monit 2012;11(5):577–88. 链接1

[10] Marantidis C, Van Way CB, Kudva JN. Acoustic-emission sensing in an onboard smart structural health monitoring system for military aircraft. In: Sirkis JS, editor. Proceedings volume 2191, Smart Structures and Materials 1994: smart sensing, processing, and instrumentation; 1994 Feb 13–18; Orlando, FL, USA; 1994. p. 2191.

[11] Feng G, Feng X, Chen B, Xiao Y, Yu Y. A microseismic method for dynamic warning of rockburst development processes in tunnels. Rock Mech Rock Eng 2015;48(5):2061–76. 链接1

[12] Feng G, Feng X, Chen B, Xiao Y, Liu G, Zhang W. Characteristics of microseismicity during breakthrough in deep tunnels: case study of Jinping-II hydropower station in China. Int J Geomech 2020;20(2):04019163. 链接1

[13] Cheng J, Song G, Sun X, Wen L, Li F. Research developments and prospects on microseismic source location in mines. Engineering 2018;4 (5):653–60. 链接1

[14] Geiger L. Probability method for the determination of earthquake epicentres from the arrival time only. Bull St Louis Univ 1912;8:60–71. 链接1

[15] Inglada V. Die berechnung der herdkoordinated eines nahbebens aus den dintrittszeiten der in einingen benachbarten stationen aufgezeichneten P-oder P-wellen. Gerlands Beitr Geophys 1928;19:73–98. German.

[16] Leighton F, Blake W. Rock noise source location techniques. Washington, DC: US Department of the Interior Information, Bureau of Mines; 1970. 链接1

[17] Leighton FW, Duvall WI. A least squares method for improving rock noise source location techniques. Washington, DC: US Bureau of Mines; 1972. Report No.: BM-RI-7626. 链接1

[18] Thurber CH. Nonlinear earthquake location: theory and examples. Bull Seismol Soc Am 1985;75(3):779–90. 链接1

[19] Tang G. A general method for determination of earthquake parameters by computer. Acta Seismol Sin 1979;1(2):186–96. Chinese. 链接1

[20] Prugger A, Gendzwill D. Microearthquake location: a non-linear approach that makes use of a simplex stepping procedure. Bull Seismol Soc Am 1988;78 (2):799–815. 链接1

[21] Waldhauser F, Ellsworth WL. A double-difference earthquake location algorithm: method and application to the Northern Hayward Fault, California. Bull Seismol Soc Am 2000;90(6):1353–68. 链接1

[22] Dong L, Li X, Tang L, Gong F. Mathematical functions and parameters for microseismic source location without pre-measuring speed. Chin J Rock Mech Eng 2011;30(10):2057–67. Chinese. 链接1

[23] Li X, Dong L. Comparison of two methods in acoustic emission source location using four sensors without measuring sonic speed. Sens Lett 2011;9 (5):2025–9. 链接1

[24] Dong L, Shu W, Li X, Han G, Zou W. Three dimensional comprehensive analytical solutions for locating sources of sensor networks in unknown velocity mining system. IEEE Access 2017;5(99):11337–51. 链接1

[25] Dong L, Li X, Ma J, Tang L. Three-dimensional analytical comprehensive solutions for acoustic emission/microseismic sources of unknown velocity system. Chin J Rock Mech Eng 2017;36:186–97. Chinese. 链接1

[26] Dong L, Shu W, Han G, Li X, Wang J. A multi-step source localization method with narrowing velocity interval of cyber–physical systems in buildings. IEEE Access 2017;5:20207–19. 链接1

[27] Dong L, Zou W, Li X, Shu W, Wang Z. Collaborative localization method using analytical and iterative solutions for microseismic/acoustic emission sources in the rockmass structure for underground mining. Eng Fract Mech 2019;210:95–112. 链接1

[28] Baxter G, Pullin R, Holford KM, Evans SL. Delta T source location for acoustic emission. Mech Syst Signal Process 2007;21(3):1512–20. 链接1

[29] Eaton MJ, Pullin R, Holford KM. Acoustic emission source location in composite materials using Delta T Mapping. Compos Appl Sci Manuf 2012;43(6):856–63. 链接1

[30] Gollob S, Kocur GK, Schumacher T, Mhamdi L, Vogel T. A novel multi-segment path analysis based on a heterogeneous velocity model for the localization of acoustic emission sources in complex propagation media. Ultrasonics 2017;74:48–61. 链接1

[31] Hart PE, Nilsson NJ, Raphael B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Sys Sci Cybern 1968;4(2):100–7. 链接1

[32] Hart PE, Nilsson NJ, Raphael B. Correction to a formal basis for the heuristic determination of minimum cost paths. ACM Sigart Bull 1972;37(37):28–9. 链接1

[33] Oommen BJ, Rueda LG. A formal analysis of why heuristic functions work. Artif Intell 2005;164(1–2):1–22. 链接1

相关研究