期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第6期 doi: 10.1016/j.eng.2019.12.018

超重力环境下非金属氮掺杂石墨烯泡沫催化还原反应性能研究

a State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
b Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
c Center of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
d Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China

收稿日期: 2019-07-16 修回日期: 2019-09-20 录用日期: 2019-12-02 发布日期: 2020-05-28

下一篇 上一篇

摘要

本文以硝基苯还原和亚甲基蓝降解为模型反应体系,以非金属氮掺杂石墨烯泡沫(NGF)作为三维结构式催化材料,研究了超重力环境对催化反应性能的影响。在超重力旋转圆管反应器内6484 g (g = 9.81 m·s–2)的超重力环境下,非金属催化硝基苯还原的表观速率常数是传统搅拌反应器内的6 倍。通过计算流体力学理论模拟,揭示了超重力旋转管式反应器内超重力水平较高,湍流动能比传统反应器内有显著提高,液固相表面更新速度快,提高了催化反应效率。X射线光电子能谱和拉曼光谱测试表明该催化材料组成和结构在超重力环境下的反应过程中保持稳定。在另一个模型反应体系中,非金属氮掺杂石墨烯泡沫催化亚甲基蓝降解的速率也随着超重力水平的增加而增大。这些结果表明了超重力强化非金属碳基催化材料催化还原反应的潜力。

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Gong K, Du F, Xia Z, Durstock M, Dai L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009;323 (5915):760–4. 链接1

[ 2 ] Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature 2013;499 (7459):419–25. 链接1

[ 3 ] Hu CG, Lin Y, Connell JW, Cheng HM, Gogotsi Y, Titirici M, et al. Carbon-based metal-free catalysts for energy storage and environmental remediation. Adv Mater 2019;31(13):1806128. 链接1

[ 4 ] Dai L. Metal-free carbon electrocatalysts: recent advances and challenges ahead. Adv Mater 2019;31(13):1900973. 链接1

[ 5 ] Wang Z, Pu Y, Wang D, Wang JX, Chen JF. Recent advances on metal-free graphene-based catalysts for the production of industrial chemicals. Front Chem Sci Eng 2018;12(4):855–66. 链接1

[ 6 ] Wang D, Chen KQ, Cheng DG, Peng C, Zhang JT. Green catalytic engineering: a powerful tool for sustainable development in chemical industry. Front Chem Sci Eng 2018;12(4):835–7. 链接1

[ 7 ] Zhang J, Liu X, Blume R, Zhang A, Schlögl R, Su DS. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science 2008;322 (5898):73–7. 链接1

[ 8 ] Li X, Pan X, Yu L, Ren P, Wu X, Sun L, et al. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene. Nat Commun 2014;5:3688–94. 链接1

[ 9 ] Tang P, Hu G, Li M, Ma D. Graphene-based metal-free catalysts for catalytic reactions in the liquid phase. ACS Catal 2016;6(10):6948–58. 链接1

[10] Wang Z, Shi J, Wang D, Pu Y, Wang JX, Chen JF. Metal-free catalytic oxidation of benzylic alcohols for benzaldehyde. React Chem Eng 2019;4(3):507–15. 链接1

[11] Wang B. The future of manufacturing: a new perspective. Engineering 2018;4 (5):722–8. 链接1

[12] Yin S, Chen K, Srinivasakannan C, Guo S, Li S, Peng J, et al. Enhancing recovery of ammonia from rare earth wastewater by air stripping combination of microwave heating and high gravity technology. Chem Eng J 2018;337:515–21. 链接1

[13] Liu Y, Bai J, Duan H, Yin X. Static magnetic field-assisted synthesis of Fe3O4 nanoparticles and their adsorption of Mn(II) in aqueous solution. Chin J Chem Eng 2017;25(1):32–6. 链接1

[14] Yu Y, Bai S, Wang S, Hu A. Ultra-short pulsed laser manufacturing and surface processing of microdevices. Engineering 2018;4(6):779–86. 链接1

[15] Tian Y, Demirel SE, Hasan MMF, Pistikopoulos EN. An overview of process systems engineering approaches for process intensification: state of the art. Chem Eng Process 2018;133:160–210. 链接1

[16] Leng J, Chen J, Wang D, Wang JX, Pu Y, Chen JF. Scalable preparation of Gd2O3: Yb3+/Er3+ upconversion nanophosphors in a high-gravity rotating packed bed reactor for transparent upconversion luminescent films. Ind Eng Chem Res 2017;56(28):7977–83. 链接1

[17] Pu Y, Leng J, Wang D, Wang JX, Foster NR, Chen JF. Process intensification for scalable synthesis of ytterbium and erbium co-doped sodium yttrium fluoride upconversion nanodispersions. Powder Technol 2018;340:208–16. 链接1

[18] He X, Tang R, Pu Y, Wang JX, Wang Z, Wang D, et al. High-gravityhydrolysis approach to transparent nanozirconia/silicone encapsulation materials of light emitting diodes devices for healthy lighting. Nano Energy 2019;62:1–10. 链接1

[19] Guo J, Jiao W, Qi G, Yuan Z, Liu Y. Applications of high-gravity technologies in gas purifications: a review. Chin J Chem Eng 2019;27(6):1361–73. 链接1

[20] Qin Y, Luo S, Geng S, Jiao W, Liu Y. Degradation and mineralization of aniline by O3/Fenton process enhanced using high-gravity technology. Chin J Chem Eng 2018;26(7):1444–50. 链接1

[21] Luo Y, Luo JZ, Chu GW, Zhao ZQ, Arowo M, Chen JF. Investigation of effective interfacial area in a rotating packed bed with structured stainless steel wire mesh packing. Chem Eng Sci 2017;170:347–54. 链接1

[22] Guo Q, Liu Y, Qi G, Jiao W. Study of low temperature combustion performance for composite metal catalysts prepared via rotating packed bed. Energy 2019;179:431–41. 链接1

[23] Jiao W, Qiao J, Qin Y, Liu Y. Effects of coexisting substances on aniline degradation with ozone-based advanced oxidation process in high-gravity fields. Chem Eng Process 2019;138:36–40. 链接1

[24] Zhang WJ, Zhang B, Shi ZQ. Study on hydrodynamic performance and mass transfer efficiency of nickel foam packing. Procedia Eng 2011;18:271–6. 链接1

[25] Lévêquer J, Rouzineau D, Prévost M, Meyer M. Hydrodynamic and mass transfer efficiency of ceramic foam packing applied to distillation. Chem Eng Sci 2017;64(11):2607–16. 链接1

[26] Li D, Müller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 2008;3(2):101–5. 链接1

[27] Guo HL, Su P, Kang XF, Ning SK. Synthesis and characterization of nitrogendoped graphene hydrogels by hydrothermal route with urea as reducingdoping agents. J Mater Chem A 2013;1(6):2248–55. 链接1

[28] Kangvansura P, Chew LM, Kongmark C, Santawaja P, Ruland H, Xia W, et al. Effects of potassium and manganese promoters on nitrogen-doped carbon nanotube-supported iron catalysts for CO2 hydrogenation. Engineering 2017;3 (3):385–92. 链接1

[29] Liu J, Yan X, Wang L, Kong L, Jian P. Three-dimensional nitrogen-doped graphene foam as metal-free catalyst for the hydrogenation reduction of pnitrophenol. J Colloid Interface Sci 2017;497:102–7. 链接1

[30] Lin D, Hu C, Chen H, Qu J, Dai L. Microporous N,P-codoped graphitic nanosheets as an efficient electrocatalyst for oxygen reduction in whole pH range for energy conversion and biosensing dissolved oxygen. Chem Eur J 2018;24(69):18487–93. 链接1

[31] Wang Z, Su R, Wang D, Shi J, Wang JX, Pu Y, et al. Sulfurized graphene as efficient metal-free catalysts for reduction of 4-nitrophenol to 4-aminophenol. Ind Eng Chem Res 2017;56(46):13610–7. 链接1

[32] Wang Z, Pu Y, Wang D, Shi J, Wang JX, Chen JF. 3D-foam-structured nitrogendoped graphene-Ni catalyst for highly efficient nitrobenzene reduction. AIChE J 2018;64(4):1330–8. 链接1

[33] Hu C, Dai L. Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv Mater 2017;29(9):4942–50. 链接1

[34] Kästner C, Thünemann AF. Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity. Langmuir 2016;32(29):7383–91. 链接1

[35] Khan SR, Farooqi ZH, Zaman WU, Ali A, Begum R, Kanwal F, et al. Kinetics and mechanism of reduction of nitrobenzene catalyzed by silver-poly (n-isopropylacryl amide-co-allylacetic acid) hybrid microgels. Mater Chem Phys 2016;171:318–27. 链接1

[36] Hu H, Xin JH, Hu H, Wang X. Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature. Nano Res 2015;8(12):3992–4006. 链接1

[37] Yang JH, Sun G, Gao Y, Zhao H, Tang P, Tan J, et al. Direct catalytic oxidation of benzene to phenol over metal-free graphene-based catalyst. Energy Environ Sci 2013;6(3):793–8. 链接1

[38] Wunder S, Lu Y, Albrecht M, Ballauff M. Catalytic activity of faceted gold nanoparticles studied by a model reaction: evidence for substrate-induced surface restructuring. ACS Catal 2011;1(8):908–16. 链接1

[39] Vidhu VK, Philip D. Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron 2014;56:54–62. 链接1

相关研究