期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第11期 doi: 10.1016/j.eng.2020.01.014

新型无煤柱自成巷开采成套技术与案例研究

a State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China
b School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China
c Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, CO 80309, USA
d Institute of Mining Research, Inner Mongolia University of Science and Technology, Baotou 014010, China

收稿日期: 2019-08-29 修回日期: 2019-12-15 录用日期: 2020-01-06 发布日期: 2020-07-17

下一篇 上一篇

摘要

本文介绍了无煤柱自成巷煤炭开采成套技术,旨在减少地下煤炭资源的浪费和矿井巷道的开挖。通过三类关键技术的相互配合,该开采技术实现了沿空巷道的自动留设,进而实现无煤柱开采。其中,恒阻大变形支护(constant-resistance large deformation support, CRLD)保证了留设巷道的顶板稳定性,定向预裂爆破(directional presplitting blasting, DPB)分割了巷道和采空区间的顶板联系,挡矸系统支护(blocking-gangue support system, BGSS)整合了采空区内垮落的岩体材料,以形成有效巷帮。通过工业性试验,验证了这三类关键技术的工程效果。现场应用结果表明:由于垮落岩体的碎胀支撑特性,留设巷道将处于卸压环境下。在经历短暂的动压影响之后,留设巷道逐渐稳定,稳定之后的巷道可满足煤矿安全生产要求。本文的研究结果论证了该开采技术具有良好的工程应用性。根据所提出的设计原则,因地制宜,无煤柱自成巷开采技术可在井工煤矿进行大规模推广。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

图18

图19

图20

参考文献

[ 1 ] Dudley B. BP energy outlook: 2018 edition. Report. London: BP p.l.c.; 2018.

[ 2 ] Yuan J. The future of coal in China. Resour Conserv Recycling 2018;129:290–2. 链接1

[ 3 ] Kimura S, Phoumin H. Energy outlook and energy saving potential in East Asia 2019. Jakarta Pusat: Economic Research Institute for ASEAN and East Asia; 2019. 链接1

[ 4 ] Zaman R, Hofer C, Brudermann T. One step ahead, two steps backwards: energy transitions and coal in developing countries. In: Proceedings of the 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE); 2018 Oct 24–26; Phuket, Thailand. New York: IEEE; 2019. 链接1

[ 5 ] Wang J. Development and prospect on fully mechanized mining in Chinese coal mines. Int J Coal Sci Technol 2014;1(3):253–60. 链接1

[ 6 ] Peng S, Chiang H. Longwall mining. Hoboken: Wiley; 1984. 链接1

[ 7 ] Wang H, Jiang Y, Zhao Y, Zhu J, Liu S. Numerical investigation of the dynamic mechanical state of a coal pillar during longwall mining panel extraction. Rock Mech Rock Eng 2013;46(5):1211–21. 链接1

[ 8 ] Gao Y, Wang Y, Yang J, Zhang X, He M. Meso- and macroeffects of roof split blasting on the stability of gateroad surroundings in an innovative nonpillar mining method. Tunn Undergr Space Technol 2019;90:99–118. 链接1

[ 9 ] Ranjith P, Zhao J, Ju M, De Silva R, Rathnaweera T, Bandara A. Opportunities and challenges in deep mining: a brief review. Engineering 2017;3(4):546–51. 链接1

[10] Jiang L, Zhang P, Chen L, Hao Z, Sainoki A, Mitri H, et al. Numerical approach for goaf-side entry layout and yield pillar design in fractured ground conditions. Rock Mech Rock Eng 2017;50(11):3049–71. 链接1

[11] Li W, Bai J, Peng S, Wang X, Xu Y. Numerical modeling for yield pillar design: a case study. Rock Mech Rock Eng 2015;48(1):305–18. 链接1

[12] Mark C. State-of-the-art in coal pillar design. Trans-Soc Mining Metal Explor Incorporated 2000;308:123–8. 链接1

[13] Chase FE, Mark C, Heasley KA. Deep cover pillar extraction in the U.S. coalfields. In: Peng SS, Mark C, Khair AW, Heasley KA, editors. Proceedings of the 21st International Conference on Ground Control in Mining. 2002 Aug 6–8; Morgantown, WV, USA. Morgantown: West Virginia University; 2002. p. 68–80. 链接1

[14] Campoli AA, Barton TM, Van Dyke FC, Gauna M. Mitigating destructive longwall bumps through conventional gate entry design. Report. Pittsburgh: US Department of Interior, Bureau of Mines; 1990. Report No.: RI 9325. 链接1

[15] Iannacchione A. Behavior of a coal pillar prone to burst in the southern Appalachian Basin of the United States. In: Proceedings of the 2nd Rockbursts and Seismicity in Mines Minneapolis; 1988 Jun 8–10; Minneapolis, MN, USA. Minneapolis: Univerisity of Minnesota; 1990. p. 295–300. 链接1

[16] Ghasemi E, Shahriar K, Sharifzadeh M, Hashemolhosseini H. Quantifying the uncertainty of pillar safety factor by Monte Carlo simulation—a case study. Arch Min Sci 2010;55(3):623–35. 链接1

[17] Lin B, Yan F, Zhu C, Zhou Y, Zou Q, Guo C, et al. Cross-borehole hydraulic slotting technique for preventing and controlling coal and gas outbursts during coal roadway excavation. J Nat Gas Sci Eng 2015;26:518–25. 链接1

[18] Frank H, Ting R, Naj A. Evolution and application of in-seam drilling for gas drainage. Int J Min Sci Technol 2013;23(4):543–53. 链接1

[19] Zhu G, Dou L, Cai W, Li Z, Zhang M, Kong Y, et al. Case study of passive seismic velocity tomography in rock burst hazard assessment during underground coal entry excavation. Rock Mech Rock Eng 2016;49(12):4945–55. 链接1

[20] Wang Y, He M, Yang J, Wang Q, Liu J, Tian X, et al. Case study on pressure-relief mining technology without advance tunneling and coal pillars in longwall mining. Tunn Undergr Space Technol 2020;97:103236. 链接1

[21] Guo Z, Wang J, Cao T, Chen L, Wang J. Research on key parameters of gobside entry retaining automatically formed by roof cutting and pressure release in thin coal seam mining. J China Univ Min Technol 2016;45 (5):879–85. Chinese. 链接1

[22] He M, Ma X, Niu F, Wang J, Liu Y. Adaptability research and application of rapid gob-side entry retaining formed by roof cutting and pressure releasing with composite roof and medium thick coal seam. Chin J Rock Mech Eng 2018;37 (12):1–14. Chinese. 链接1

[23] He M, Gao Y, Yang J, Wang J, Wang Y, Zhu Z. Engineering experimentation of gob-side entry retaining formed by roof cutting and pressure release in a thick-seam fast-extracted mining face. Rock Soil Mech 2018;39(1):254–64. 链接1

[24] He M, Ma Z, Guo Z, Chen S. Key parameters of the gob-side entry retaining formed by roof cutting and pressure release in deep medium-thickness coal seams. J China Univ Min Technol 2018;47(3):468–77. Chinese. 链接1

[25] He M, Gong W, Wang J, Qi P, Tao Z, Du S, et al. Development of a novel energyabsorbing bolt with extraordinarily large elongation and constant resistance. Int J Rock Mech Min 2014;67:29–42. 链接1

[26] He M, inventor; He M, assignee. Constant-resistance large-deformation anchor rod. United States patent US 008974151. 2015 Mar 10.

[27] Yang J, He M, Cao C. Design principles and key technologies of gob side entry retaining by roof pre-fracturing. Tunn Undergr Space Technol 2019;90:309–18. 链接1

[28] He M, Li C, Gong W, Sousa LR, Li S. Dynamic tests for a constant-resistance– large–deformation bolt using a modified SHTB system. Tunn Undergr Space Technol 2017;64:103–16. 链接1

[29] He M, Zhang X, Zhao S. Directional destress with tension blasting in coal mines. Procedia Eng 2017;191:89–97. 链接1

[30] He M, inventor; Wang X, assignee. A bilateral cumulative tensile explosion tube. Chinese patent CN 101140152A. 2006 Sep 6. Chinese.

[31] Zhang X, Hu J, Xue H, Mao W, Gao Y, Yang J, et al. Innovative approach based on roof cutting by energy-gathering blasting for protecting roadways in coal mines. Tunn Undergr Space Technol 2020;99:103387. 链接1

[32] Li Z, Dou L, Cai W, Wang G, Ding Y, Kong Y. Mechanical analysis of static stress within fault-pillars based on a voussoir beam structure. Rock Mech Rock Eng 2016;49(3):1097–105. 链接1

[33] Zhang X, Pak RYS, Gao Y, Liu C, Zhang C, Yang J, et al. Field experiment on directional roof presplitting for pressure relief of retained roadways. Int J Rock Mech Min Sci 2020;134(3):104436. 链接1

[34] Zhang N, Chen H, Chen Y. An engineering case of gob-side entry retaining in one kilometer-depth soft rock roadway with high ground pressure. J China Coal Soc 2015;40(3):494–501. Chinese. 链接1

[35] Tang J, Deng Y, Tu X, Hu H. Analysis of roof separation in gob-side entry retaining combined support with bolting wire mesh. J China Coal Soc 2010;35:1827–31. Chinese. 链接1

[36] Zheng X, Zhang N, Yuan L, Xue F. Method and application of simultaneous pillar-less coal mining and gas extraction by staged gob-side entry retaining. J China Univ Min Technol 2012;41(3):390–6. Chinese. 链接1

[37] Xue J, Han C. Strata behavior and control countermeasures for the gob-side entry retaining in the condition of large mining height. J Min Saf Eng 2012;29:466–73. Chinese. 链接1

[38] Cao S, Zou D, Bai Y, Wen D, Yang Y, He P. Study on upward mining of sublevels for gob-side entry retaining in three-soft thin coal seam group. J Min Saf Eng 2012;29:322–7. Chinese. 链接1

[39] Cheng Y, Jiang F, Lin J, Chen Q, Zhang D, Feng F. Experimental study on gob-side entry retaining by roadside flexible packing under hard roof. J Min Saf Eng 2012;29:757–61. Chinese. 链接1

[40] Ning J, Ma P, Liu X, Zhao J, Liu W. Supporting mechanism of ‘‘yieldingsupporting” beside roadway maintained along the goaf under hard rocks. J Min Saf Eng 2013;30:369–74. Chinese. 链接1

[41] Han C, Zhang N, Xue J, Kan J, Zhao Y. Multiple and long-term disturbance of gob-side entry retaining by grouped roof collapse and an innovative adaptive technology. Rock Mech Rock Eng 2019;52(8):2761–73. 链接1

[42] Tan Y, Yu F, Ning J, Zhao T. Design and construction of entry retaining wall along a gob side under hard roof stratum. Int J Rock Mech Min Sci 2015;77:115–21. 链接1

[43] Zhang N, Yuan L, Han C, Xue J, Kan J. Stability and deformation of surrounding rock in pillarless gob-side entry retaining. Saf Sci 2012;50(4):593–9. 链接1

[44] Yang H, Cao S, Wang S, Fan Y, Wang S, Chen X. Adaptation assessment of gobside entry retaining based on geological factors. Eng Geol 2016;209:143–51. 链接1

[45] He M, Xie H, Peng S, Jiang Y. Study on rock mechanics in deep mining engineering. Chin J Rock Mech Eng 2005;24(16):2803–13. Chinese^p 链接1

相关研究