期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第9期 doi: 10.1016/j.eng.2020.01.015

4D打印定律

Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA

收稿日期: 2019-07-30 修回日期: 2019-10-27 录用日期: 2020-01-07 发布日期: 2020-08-13

下一篇 上一篇

摘要

三维(3D)打印是一种增材制造工艺。相应地,四维(4D)打印是一个涉及多个研究领域的制造工艺。4D打印保留了3D打印的一般属性(如减少材料浪费、消除注射模具、冲压模具和机械加工过程),并且随着时间的推移能实现产品第四维度的智能行为。在打印过程中,这种智能行为(通常由逆数学问题)编码进刺激响应多材料中,并在打印后通过刺激该材料来实现。3D和4D打印结构的主要区别是4D打印存在一个附加的维度,这个维度可以随着时间的推移进行智能进化。然而,目前还没有用于建模和预测这个附加维度的一般公式。本文从基本原理开始,导出并验证了一个具有特定格式的一般双指数公式,该公式可以模拟几乎所有4D结构的时间相关性行为(如水、光化学、光热、溶剂、pH、湿度、电化学、电热、超声波等响应)。研究表明,需要利用两种类型的时间常数来捕捉4D多材料的正确的时间相关性行为。本文引入了4D多材料结构中主动材料和被动材料的界面错配压力的概念,从而得到了两个时间常数之一。本文从几乎所有刺激响应材料的时间相关性行为的统一模型中开发和提取另一个时间常数。本文的结果从最基本的概念开始,并以控制方程结束,可以作为未来4D打印领域研究的一般设计原则,其中时间相关性行为应该被正确地理解、建模和预测。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

参考文献

[ 1 ] Tibbits S. The emergence of ‘‘4D printing.” In: Proceedings of TED Conference 2013; 2013 Feb 25–Mar 1; Long Beach, CA, USA; 2013. 链接1

[ 2 ] Tibbits S. 4D printing: multi-material shape change. Archit Des 2014;84 (1):116–21. 链接1

[ 3 ] Tibbits S, McKnelly C, Olguin C, Dikovsky D, Hirsch S. 4D printing and universal transformation. In: Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture; 2014 Oct 23–25; Los Angeles, CA, USA; 2014. p. 539–48. 链接1

[ 4 ] Ge Q, Qi HJ, Dunn ML. Active materials by four-dimension printing. Appl Phys Lett 2013;103(13):131901. 链接1

[ 5 ] Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat Mater 2016;15(4):413–8. 链接1

[ 6 ] Momeni F, Hassani SMM, Liu X, Ni J. A review of 4D printing. Mater Des 2017;122:42–79. 链接1

[ 7 ] Rastogi P, Kandasubramanian B. Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing. Chem Eng J 2019;366:264–304. 链接1

[ 8 ] Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, et al. Stimulusresponsive shape memory materials: a review. Mater Des 2012;33:577–640. 链接1

[ 9 ] Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, et al. Emerging applications of stimuli-responsive polymer materials. Nat Mater 2010;9 (2):101–13. 链接1

[10] Behl M, Lendlein A. Shape-memory polymers. Mater Today 2007;10(4):20–8. 链接1

[11] McAlpine KJ. 4D-printed structure changes shape when placed in water [Internet]. Cambridge: The Harvard Gazette; c2016 [cited 2019 Oct 1]. Available from: https://news.harvard.edu/gazette/story/2016/01/4d-printedstructure-changes-shape-when-placed-in-water/.

[12] Kuang X, Roach DJ, Wu J, Hamel CM, Ding Z, Wang T, et al. Advances in 4D printing: materials and applications. Adv Funct Mater 2019;29(2):1805290. 链接1

[13] Kadic M, Milton GW, van Hecke M, Wegener M. 3D metamaterials. Nat Rev Phys 2019;1:198–210. 链接1

[14] Wei H, Zhang Q, Yao Y, Liu L, Liu Y, Leng J. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl Mater Interfaces 2017;9(1):876–83. 链接1

[15] Velasco-Hogan A, Xu J, Meyers MA. Additive manufacturing as a method to design and optimize bioinspired structures. Adv Mater 2018;30(52): e1800940. 链接1

[16] Campbell TA, Tibbits S, Garrett B. The programmable world. Sci Am 2014;311 (5):60–5. 链接1

[17] Byambaa B, Annabi N, Yue K, Trujillo-de Santiago G, Alvarez MM, Jia W, et al. Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv Healthc Mater 2017;6(16):1700015. 链接1

[18] Truby RL, Lewis JA. Printing soft matter in three dimensions. Nature 2016;540 (7633):371–8. 链接1

[19] Pei E, Hsiang LG. Technological considerations for 4D printing: an overview. Prog Addit Manuf 2018;3(1–2):95–107. 链接1

[20] Raviv D, Zhao W, McKnelly C, Papadopoulou A, Kadambi A, Shi B, et al. Active printed materials for complex self-evolving deformations. Sci Rep 2014;4:7422. 链接1

[21] Kwok TH, Chen Y. GDFE: geometry-driven finite element for fourdimensional printing. J Manuf Sci Eng 2017;139(11):111006. 链接1

[22] Sossou G, Demoly F, Montavon G, Gomes S. Towards a top-down design methodology for 4D printing. In: Proceedings of the 21st International Conference on Engineering Design (ICED 17); 2017 Aug 21–25; Vancouver, BC, Canada; 2017. p. 395–404. 链接1

[23] Sossou G, Demoly F, Montavon G, Gomes S. Design for 4D printing: rapidly exploring the design space around smart materials. Procedia CIRP 2018;70:120–5. 链接1

[24] Khare V, Sonkaria S, Lee GY, Ahn SH, Chu WS. From 3D to 4D printing—design, material and fabrication for multi-functional multi-materials. Int J Precis Eng Manuf Green Technol 2017;4(3):291–9. 链接1

[25] Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML. Multimaterial 4D printing with tailorable shape memory polymers. Sci Rep 2016;6:31110. 链接1

[26] Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H, Yadid M, et al. Instrumented cardiac microphysiological devices via multimaterial threedimensional printing. Nat Mater 2017;16(3):303–8. 链接1

[27] Pioneering 4D printer developed [Internet]. Eureka: Sci-News; 2018 Mar 21 [cited 2019 May 1]. Available from: http://www.sci-news.com/technologies/ 4d-printer-05837.html.

[28] Major ML. Engineers create 4D printer that combines four 3D printing techniques [Internet]. San Francisco: Interesting Engineering; 2018 Mar 24 [cited 2019 May 1]. Available from: https://interestingengineering.com/ engineers-create-4d-printer-that-combines-four-3d-printing-techniques.

[29] Saunders S. Powerful new 4D printer speeds next-generation, nextdimension 3D printing [Internet]. New York: 3DPrint; 2018 Mar 22 [cited 2019 May 1]. Available from: https://3dprint.com/207493/4d-printer-at-acsmeeting/.

[30] Bandyopadhyay A, Heer B. Additive manufacturing of multi-material structures. Mater Sci Eng Rep 2018;129:1–16. 链接1

[31] MacDonald E, Wicker R. Multiprocess 3D printing for increasing component functionality. Science 2016;353(6307):aaf2093. 链接1

[32] Lopes LR, Silva AF, Carneiro OS. Multi-material 3D printing: the relevance of materials affinity on the boundary interface performance. Addit Manuf 2018;23:45–52. 链接1

[33] Demir AG, Previtali B. Multi-material selective laser melting of Fe/Al-12Si components. Manuf Lett 2017;11:8–11. 链接1

[34] Mao Y, Ding Z, Yuan C, Ai S, Isakov M, Wu J, et al. 3D printed reversible shape changing components with stimuli responsive materials. Sci Rep 2016;6:24761. 链接1

[35] Momeni F, Sabzpoushan S, Valizadeh R, Morad MR, Liu X, Ni J. Plant leafmimetic smart wind turbine blades by 4D printing. Renew Energy 2019;130:329–51. 链接1

[36] Tamagawa H. Thermo-responsive two-way shape changeable polymeric laminate. Mater Lett 2010;64(6):749–51. 链接1

[37] Zhang Q, Zhang K, Hu G. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Sci Rep 2016;6:22431. 链接1

[38] Otero TF, Martinez JG, Arias-Pardilla J. Biomimetic electrochemistry from conducting polymers. A review: artificial muscles, smart membranes, smart drug delivery and computer/neuron interfaces. Electrochim Acta 2012;84:112–8. 链接1

[39] Yang C, Wang B, Li D, Tian X. Modelling and characterisation for the responsive performance of CF/PLA and CF/PEEK smart materials fabricated by 4D printing. Virtual Phys Prototyp 2017;12(1):69–76. 链接1

[40] Lee AY, An J, Chu CK, Zhang Y. Preliminary investigation of the reversible 4D printing of a dual-layer component. Engineering 2019;5(6):1159–70. 链接1

[41] Shiblee MNI, Ahmed K, Kawakami M, Furukawa H. 4D printing of shapememory hydrogels for soft-robotic functions. Adv Mater Tech 2019;4 (8):1900071. 链接1

[42] Hamel C, Roach D, Long K, Demoly F, Dunn M, Qi H. Machine-learning based design of active composite structures for 4D printing. Smart Mater Struct 2019;28(6):065005. 链接1

[43] Wang G, Yang H, Yan Z, Gecer Ulu N, Tao Y, Gu J, et al. 4DMesh: 4D printing morphing non-developable mesh surfaces. In: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology; 2018 Oct 14–17; Berlin, Germany; 2018 p. 623–35. 链接1

[44] Sossou G, Demoly F, Belkebir H, Qi HJ, Gomes S, Montavon G. Design for 4D printing: a voxel-based modeling and simulation of smart materials. Mater Des 2019;175:107798. 链接1

[45] Sossou G, Demoly F, Belkebir H, Qi HJ, Gomes S, Montavon G. Design for 4D printing: modeling and computation of smart materials distributions. Mater Des 2019;181:108074. 链接1

[46] Ding Z, Weeger O, Qi HJ, Dunn ML. 4D rods: 3D structures via programmable 1D composite rods. Mater Des 2018;137:256–65. 链接1

[47] Timoshenko S. Analysis of bi-metal thermostats. JOSA 1925;11(3):233–55. 链接1

[48] Odent J, Vanderstappen S, Toncheva A, Pichon E, Wallin TJ, Wang K, et al. Hierarchical chemomechanical encoding of multi-responsive hydrogel actuators via 3D printing. J Mater Chem A 2019;25(7):15395–403. 链接1

[49] Teoh JEM, An J, Chua CK, Lv M, Krishnasamy V, Liu Y. Hierarchically selfmorphing structure through 4D printing. Virtual Phys Prototyp 2017;12 (1):61–8. 链接1

[50] Zolfagharian A, Kouzani AZ, Maheepala M, Yang Khoo S, Kaynak A. Bending control of a 3D printed polyelectrolyte soft actuator with uncertain model. Sens Actuators A Phys 2019;288:134–43. 链接1

[51] Deng D, Chen Y. Origami-based self-folding structure design and fabrication using projection based stereolithography. J Mech Des 2015;137(2):021701. 链接1

[52] Wang W, Yu CY, Serrano PAA, Ahn SH. Soft grasping mechanisms composed of shape memory polymer based self-bending units. Compos Part B 2019;164:198–204. 链接1

[53] Van Hoa S. Development of composite springs using 4D printing method. Compos Struct 2019;210:869–76. 链接1

[54] Ge Q, Dunn CK, Qi HJ, Dunn ML. Active origami by 4D printing. Smart Mater Struct 2014;23(9):094007. 链接1

[55] Wu J, Yuan C, Ding Z, Isakov M, Mao Y, Wang T, et al. Multi-shape active composites by 3D printing of digital shape memory polymers. Sci Rep 2016;6:24224. 链接1

[56] Su JW, Tao X, Deng H, Zhang C, Jiang S, Lin Y, et al. 4D printing of a selfmorphing polymer driven by a swellable guest medium. Soft Matter 2018;14 (5):765–72. 链接1

[57] Stroganov V, Pant J, Stoychev G, Janke A, Jehnichen D, Fery A, et al. 4D biofabrication: 3D cell patterning using shape-changing films. Adv Funct Mater 2018;28(11):1706248. 链接1

[58] Ji Z, Yan C, Yu B, Zhang X, Cai M, Jia X, et al. 3D printing of hydrogel architectures with complex and controllable shape deformation. Adv Mater Tech 2019;4(4):1800713. 链接1

[59] Boley JW, van Rees WM, Lissandrello C, Horenstein MN, Truby RL, Kotikian A, et al. Shape-shifting structured lattices via multimaterial 4D printing. Proc Natl Acad Sci 2019;116(42):20856–62. 链接1

[60] Wang Q, Tian X, Huang L, Li D, Malakhov AV, Polilov AN. Programmable morphing composites with embedded continuous fibers by 4D printing. Mater Des 2018;155:404–13. 链接1

[61] Kim B, La Flamme K, Peppas NA. Dynamic swelling behavior of pH-sensitive anionic hydrogels used for protein delivery. J Appl Polym Sci 2003;89 (6):1606–13. 链接1

[62] Berens AR, Hopfenberg HB. Diffusion and relaxation in glassy polymer powders: 2. separation of diffusion and relaxation parameters. Polymer 1978;19(5):489–96. 链接1

[63] Czugala M, O’Connell C, Blin C, Fischer P, Fraser KJ, Benito-Lopez F, et al. Swelling and shrinking behaviour of photoresponsive phosphonium-based ionogel microstructures. Sens Actuators B Chem 2014;194:105–13. 链接1

[64] Pytel A, Kiusalaas J. Mechanics of materials. 2nd ed. Stamford: Cengage Learning; 2012. 链接1

[65] Kaviany M. Essentials of heat transfer: principles, materials, and applications. New York: Cambridge University Press; 2011. 链接1

[66] Glavatska NI, Rudenko AA, L’vov VA. Time-dependent magnetostrain effect and stress relaxation in the martensitic phase of Ni–Mn–Ga. J Magn Magn Mater 2002;241(2–3):287–91. 链接1

[67] Muliana A. Time dependent behavior of ferroelectric materials undergoing changes in their material properties with electric field and temperature. Int J Solids Struct 2011;48(19):2718–31. 链接1

[68] Kundys B. Photostrictive materials. Appl Phys Rev 2015;2(1):011301. 链接1

[69] Naumov P, Chizhik S, Panda MK, Nath NK, Boldyreva E. Mechanically responsive molecular crystals. Chem Rev 2015;115(22):12440–90. 链接1

[70] Young RJ, Lovell PA. Introduction to polymers. Boca Raton: Chapman & Hall; 1991. 链接1

[71] Von Bertalanffy L. A quantitative theory of organic growth (inquiries on growth laws. II). Hum Biol 1938;10(2):181–213. 链接1

[72] Malthus TR. An essay on the principle of population. London: J. Johnson; 1798. 链接1

[73] Verhulst PF. Notice sur la loi que la population suit dans son accroissement. Corresp Math Phys 1838;10:113–21. France. 链接1

[74] Matsumoto E. Phytomimetic 4D printing [Internet]. Santa Barbara: KITP; 2016 Jan 22 [cited 2017 Dec 1]. Available from: http://online.kitp.ucsb.edu/ online/sheets16/matsumoto/.

[75] Duffy S. Linear viscoelasticity: mechanical (rheological) models [Internet]. Cleveland: Cleveland State University; [cited 2017 Dec 1]. Available from: http://academic.csuohio.edu/duffy_s/Linear_Visco.pdf.

[76] Hu J, Zhu Y, Huang H, Lu J. Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 2012;37(12):1720–63. 链接1

[77] Hager MD, Bode S, Weber C, Schubert US. Shape memory polymers: past, present and future developments. Prog Polym Sci 2015;49–50:3–33. 链接1

[78] Bakarich SE, Gorkin R III, Panhuis M, Spinks GM. 4D printing with mechanically robust, thermally actuating hydrogels. Macromol Rapid Commun 2015;36(12):1211–7. 链接1

[79] Nadgorny M, Xiao Z, Chen C, Connal LA. Three-dimensional printing of pHresponsive and functional polymers on an affordable desktop printer. ACS Appl Mater Interfaces 2016;8(42):28946–54. 链接1

[80] Le Duigou A, Castro M, Bevan R, Martin N. 3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Mater Des 2016;96:106–14. 链接1

[81] Alipour N, Andersson RL, Olsson RT, Gedde UW, Hedenqvist MS. VOC-induced flexing of single and multilayer polyethylene films as gas sensors. ACS Appl Mater Interfaces 2016;8(15):9946–53. 链接1

[82] Nath NK, Pejov L, Nichols SM, Hu C, Saleh N, Kahr B, et al. Model for photoinduced bending of slender molecular crystals. J Am Chem Soc 2014;136(7):2757–66. 链接1

[83] Zhou Y, Hauser AW, Bende NP, Kuzyk MG, Hayward RC. Waveguiding microactuators based on a photothermally responsive nanocomposite hydrogel. Adv Funct Mater 2016;26(30):5447–52. 链接1

[84] Li G, Yan Q, Xia H, Zhao Y. Therapeutic-ultrasound-triggered shape memory of a melamine-enhanced poly (vinyl alcohol) physical hydrogel. ACS Appl Mater Interfaces 2015;7(22):12067–73. 链接1

[85] Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math 1944;2(2):164–8. 链接1

[86] Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 1963;11(2):431–41. 链接1

[87] Botean AI. Thermal expansion coefficient determination of polylactic acid using digital image correlation. E3S Web Conf 2018. 32:01007. 链接1

[88] Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev 2016;107:367–92. 链接1

[89] Mortazavi B, Hassouna F, Laachachi A, Rajabpour A, Ahzi S, Chapron D, et al. Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites. Thermochim Acta 2013;552:106–13. 链接1

[90] Thermal conductivity of selected materials and gases [Internet]. Location: Engineering ToolBox; [cited 2019 May 1]. Available from: https://www. engineeringtoolbox.com/thermal-conductivity-d_429.html.

[91] Zhang Q, Yan D, Zhang K, Hu G. Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique. Sci Rep 2015;5:8936. 链接1

[92] Zhang X, Yu Z, Wang C, Zarrouk D, Seo JWT, Cheng JC, et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat Commun 2014;5:2983. 链接1

[93] Hirano A, Hashimoto T, Kitagawa D, Kono K, Kobatake S. Dependence of photoinduced bending behavior of diarylethene crystals on ultraviolet irradiation power. Cryst Growth Des 2017;17(9):4819–25. 链接1

[94] De Volder MF, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science 2013;339(6119):535–9. 链接1

[95] He S, Chen P, Sun X, Peng H. Stimuli-responsive materials from carbon nanotubes. In: Peng H, Li Q, Chen T, editors. Industrial applications of carbon nanotubes. Amsterdam: Elsevier; 2017. 链接1

[96] Le Duigou A, Chabaud G, Scarpa F, Castro M. Bioinspired electro–thermo– hygro reversible shape-changing materials by 4D printing. Adv Funct Mater 2019;29(40):1903280. 链接1

[97] Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev 2017;117(15):10212–90. 链接1

[98] Yuan C, Ding Z, Wang TJ, Dunn ML, Qi HJ. Shape forming by thermal expansion mismatch and shape memory locking in polymer/elastomer laminates. Smart Mater Struct 2017;26(10):105027. 链接1

[99] Bonner M, Montes de Oca H, Brown M, Ward IM. A novel approach to predict the recovery time of shape memory polymers. Polymer 2010;51(6):1432–6. 链接1

[100] Li F, Larock RC. New soybean oil–styrene–divinylbenzene thermosetting copolymers. v. shape memory effect. J Appl Polym Sci 2002;84(8):1533–43. 链接1

[101] Lin JR, Chen LW. Shape-memorized crosslinked ester-type polyurethane and its mechanical viscoelastic model. J Appl Polym Sci 1999;73(7):1305–19. 链接1

[102] Diani J, Liu Y, Gall K. Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers. Polym Eng Sci 2006;46(4):486–92. 链接1

[103] Gu J, Leng J, Sun H, Zeng H, Cai Z. Thermomechanical constitutive modeling of fiber reinforced shape memory polymer composites based on thermodynamics with internal state variables. Mech Mater 2019;130:9–19. 链接1

[104] Zeng H, Xie Z, Gu J, Sun H. A 1D thermomechanical network transition constitutive model coupled with multiple structural relaxation for shape memory polymers. Smart Mater Struct 2018;27(3):035024. 链接1

[105] Gu J, Leng J, Sun H. A constitutive model for amorphous shape memory polymers based on thermodynamics with internal state variables. Mech Mater 2017;111:1–14. 链接1

[106] Yu K, McClung AJ, Tandon GP, Baur JW, Qi HJ. A thermomechanical constitutive model for an epoxy based shape memory polymer and its parameter identifications. Mech Time Depend Mater 2014;18(2):453–74. 链接1

[107] Westbrook KK, Kao PH, Castro F, Ding Y, Qi HJ. A 3D finite deformation constitutive model for amorphous shape memory polymers: a multi-branch modeling approach for nonequilibrium relaxation processes. Mech Mater 2011;43(12):853–69. 链接1

[108] Li Y, He Y, Liu Z. A viscoelastic constitutive model for shape memory polymers based on multiplicative decompositions of the deformation gradient. Int J Plast 2017;91:300–17. 链接1

[109] Zeng H, Leng J, Gu J, Sun H. A thermoviscoelastic model incorporated with uncoupled structural and stress relaxation mechanisms for amorphous shape memory polymers. Mech Mater 2018;124:18–25. 链接1

[110] Gu J, Sun H, Fang C. A finite deformation constitutive model for thermally activated amorphous shape memory polymers. J Intell Mater Syst Struct 2015;26(12):1530–8. 链接1

[111] Lei M, Yu K, Lu H, Qi HJ. Influence of structural relaxation on thermomechanical and shape memory performance of amorphous polymers. Polymer 2017;109:216–28. 链接1

[112] Chen J, Liu L, Liu Y, Leng J. Thermoviscoelastic shape memory behavior for epoxy-shape memory polymer. Smart Mater Struct 2014;23(5):055025. 链接1

[113] Nguyen TD, Qi HJ, Castro F, Long KN. A thermoviscoelastic model for amorphous shape memory polymers: incorporating structural and stress relaxation. J Mech Phys Solids 2008;56(9):2792–814. 链接1

[114] Wang ZD, Li DF, Xiong ZY, Chang RN. Modeling thermomechanical behaviors of shape memory polymer. J Appl Polym Sci 2009;113(1):651–6. 链接1

[115] Wagermaier W, Kratz K, Heuchel M, Lendlein A. Characterization methods for shape-memory polymers. In: Lendlein A, editor. Shape-memory polymers. Berlin: Springer; 2009. 链接1

[116] Lagace PA. Unit 9 effects of the environment [Internet]. Cambridge: Massachusetts Institute of Technology; c2001 [cited 2019 Oct 1]. Available from: https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-20- structural-mechanics-fall-2002/lecture-notes/unit9.pdf.

[117] Liu Y, Gall K, Dunn ML, Greenberg AR, Diani J. Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int J Plast 2006;22(2):279–313. 链接1

[118] Chen YC, Lagoudas DC. A constitutive theory for shape memory polymers. Part II: a linearized model for small deformations. J Mech Phys Solids 2008;56 (5):1766–78. 链接1

[119] Kazakevicˇiute ˙ -Makovska R, Heuchel M, Kratz K, Steeb H. Universal relations in linear thermoelastic theories of thermally responsive shape memory polymers. Int J Eng Sci 2014;82:140–58. 链接1

[120] Qi HJ, Nguyen TD, Castro F, Yakacki CM, Shandas R. Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers. J Mech Phys Solids 2008;56(5):1730–51. 链接1

[121] Athanasopoulos N, Siakavellas N. Variable emissivity through multilayer patterned surfaces for passive thermal control: preliminary thermal design of a nano-satellite. In: Proceedings of the 48th International Conference on Environmental Systems; 2018 Jul 8–12; Albuquerque, NM, USA; 2018. 链接1

[122] Athanasopoulos N, Siakavellas NJ. Smart patterned surfaces with programmable thermal emissivity and their design through combinatorial strategies. Sci Rep 2017;7:12908. 链接1

[123] Ding Z, Yuan C, Peng X, Wang T, Qi HJ, Dunn ML. Direct 4D printing via active composite materials. Sci Adv 2017;3(4):e1602890. 链接1

[124] Van Manen T, Janbaz S, Zadpoor AA. Programming 2D/3D shape-shifting with hobbyist 3D printers. Mater Horiz 2017;4(6):1064–9. 链接1

相关研究