期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第4期 doi: 10.1016/j.eng.2020.01.016

一种促进低温快速沉积Cu(In,Ga)Se2薄膜生长的单加热克努森蒸发源的改良设计

a Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Institute of Photoelectronic Thin Film and Devices, College of Electronic Information and Optical Engineering, Nankai university, Tianjin 300350, China
b Engineering Center of Thin Film Photoelectronic Technology of Ministry of Education, Institute of Photoelectronic Thin Film and Devices, College of Electronic Information and Optical Engineering, Nankai university, Tianjin 300350, China

收稿日期: 2019-07-08 修回日期: 2019-10-09 录用日期: 2020-01-07 发布日期: 2020-09-16

下一篇 上一篇

摘要

在共蒸发工艺中,克努森蒸发源经常被用来生长高质量Cu(In,Ga)Se2(CIGS)薄膜。然而,在整个薄膜沉积过程中(尤其在低温工艺下),传统单加热克努森蒸发源不能使金属完全硒化,这可能是由蒸发源坩埚喷嘴处的冷凝和液滴喷射现象造成的。本文将通过热力学分析解释这一现象,同时提出了一种新型单加热克努森蒸发源来解决这一问题。与传统低温快速沉积工艺相比,新型单加热蒸发源提高了薄膜质量,并在230 nm·min–1的生长速率下,将器件相对效率提高了29%。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Jackson P, Wuerz R, Hariskos D, Lotter E, Witte W, Powalla M. Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys Status Solidi Rapid Res Lett 2016;10(8):583–6. 链接1

[ 2 ] Niki S, Contreras M, Repins I, Powalla M, Kushiya K, Ishizuka S, et al. CIGS absorbers and processes. Prog Photovolt Res Appl 2010;18(6):453–66. 链接1

[ 3 ] Herrmann D, Kratzert P, Weeke S, Zimmer M, Djordjevic-Reiss J, Hunger R, et al. CIGS module manufacturing with high deposition rates and efficiencies. In: Proceedings of the IEEE 40th Photovoltaic Specialists Conference (PVSC), 2014 Jun 8–13; Denver, CO, USA. p. 775–7. 链接1

[ 4 ] Edoff M, Jarmar T, Nilsson NS, Wallin E, Högström D, Stolt O, et al. High Voc in (Cu,Ag)(In,Ga)Se2 solar cells. IEEE J Photovolt 2017;7(6):1789–94. 链接1

[ 5 ] Ward JW, Mulford RNR, Bivins RL. Study of some of the parameters affecting Knudsen effusion. II. A Monte Carlo computer analysis of parameters deduced from experiment. J Chem Phys 1967;47(5):1718–23. 链接1

[ 6 ] Hanket G, Fields SL, Elliott JR. Design and testing of pilot-scale Cu and mixedvapor Ga-In evaporation sources. In: Proceedings of the IEEE 40th Photovoltaic Specialists Conference (PVSC); 2014 Jun 8–13; Denver, CO, USA; 2014.

[ 7 ] Zhang X, Tsuyoshi K, Yasuyoshi K, Akira Y. Growth of Ag(In,Ga)Se2 films by modified three-stage method and influence of annealing on performance of solar cells. Jpn J Appl Phys 2012;51(10):10NC05. 链接1

[ 8 ] Hanket GM. Manufacture of large-area copper indium (gallium) diselenide thin films for photovoltaic applications [dissertation]. Newark: University of Delaware; 1999. 链接1

[ 9 ] Zhang L, He Q, Jiang WL, Liu FF, Li CJ, Sun Y. Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films. Sol Energy Mater Sol Cells 2009;93(1):114–8. 链接1

[10] Lin S, Liu W, Zhang Y, Cheng S, Fan Y, Zhou Z, et al. Adjustment of alkali element incorporations in Cu(In,Ga)Se2 thin films with wet chemistry Mo oxide as a hosting reservoir. Sol Energy Mater Sol Cells 2018;174:16–24. 链接1

[11] Canava B, Guillemoles JF, Vigneron J, Lincot D, Etcheberry A. Chemical elaboration of well defined Cu(In,Ga)Se2 surfaces after aqueous oxidation etching. J Phys Chem Solids 2003;64(9–10):1791–6. 链接1

[12] Chen CH, Lin TY, Hsu CH, Wei SY, Lai CH. Comprehensive characterization of Cu-rich Cu(In,Ga)Se2 absorbers prepared by one-step sputtering process. Thin Solid Films 2013;535:122–6. 链接1

[13] Zhang L, Liu F, Li F, He Q, Li B, Li C. Structural, optical and electrical properties of low-temperature deposition Cu(InxGa1x)Se2 thin films. Sol Energy Mater Sol Cells 2012;99:356–61. 链接1

[14] Dwyer DJ, Schujman SB, Novak JA, Metacarpa DJ, Haldar P. Selenium flux effects on Cu(In,Ga)Se2 growth rate, and control by in-line X-ray fluorescence. In: Proceedings of the IEEE 39th Photovoltaic Specialists Conference (PVSC); 2013 Jun 16–21; Tampa, FL, USA. p. 1957–60. 链接1

[15] Fonseca JMS, Pfohl O, Dohrn R. Development and test of a new Knudsen effusion apparatus for the measurement of low vapour pressures. J Chem Thermodyn 2011;43(12):1942–9. 链接1

[16] Ribeiro da Silva MAV, Monte MJS, Santos LMNBF. The design, construction, and testing of a new Knudsen effusion apparatus. J Chem Thermodyn 2006;38 (6):778–87. 链接1

[17] Petela R. Exergy of undiluted thermal radiation. Sol Energy 2003;74 (6):469–88. 链接1

[18] Huebner WF, Markiewicz WJ. The temperature and bulk flow speed of a gas effusing or evaporating from a surface into a void after reestablishment of collisional equilibrium. Icarus 2000;148(2):594–6. 链接1

[19] Chirila A, Guettler D, Brémaud D, Buecheler S, Verma R, Seyrling S, et al. CIGS solar cells grown by a three-stage process with different evaporation rates. In: Proceedings of the IEEE 34th Photovoltaic Specialists Conference (PVSC); 2009 Jun 7–12; Philadelphia, PA, USA. p. 812–6. 链接1

[20] Liu Y, Li B, Lin S, Liu W, Adam J, Madsen M, et al. Numerical analysis on effects of experimental Ga grading on Cu(In,Ga)Se2 solar cell performance. J Phys Chem Solids 2018;120:190–6. 链接1

[21] Pianezzi F, Reinhard P, Chirila˘ A, Bissig B, Nishiwaki S, Buecheler S, et al. Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells. Phys Chem Chem Phys 2014;16(19):8843–51. 链接1

[22] Eisenbarth T, Unold T, Caballero R, Kaufmann CA, Schock HW. Interpretation of admittance, capacitance–voltage, and current–voltage signatures in Cu(In,Ga)Se2 thin film solar cells. J Appl Phys 2010;107(3): 034509. 链接1

[23] Siebentritt S. What limits the efficiency of chalcopyrite solar cells? Sol Energy Mater Sol Cells 2011;95(6):1471–6. 链接1

相关研究