期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第4期 doi: 10.1016/j.eng.2020.02.008

酶法合成sn-2棕榈酸甘油酯的研究进展

a International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food
Science and Technology, Jiangnan University, Wuxi 214122, China
b Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
c College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
d Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., Shanghai 200137, China
e Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA

收稿日期: 2018-08-30 修回日期: 2018-10-07 录用日期: 2019-05-08 发布日期: 2020-03-05

下一篇 上一篇

摘要

人乳脂(human milk fat, HMF)是婴儿重要的能量和营养来源,甘油三酯(TAG)在人乳脂中的含量约为98%,其具有独特的分子结构。HMF在甘油碳骨架sn-2位的棕榈酸(PA)含量超过70%,而在sn-1,3位高度富集多不饱和脂肪酸。研究表明,HMF中特定的TAG结构在婴儿生长过程中起重要作用。Sn-2棕榈酸甘油酯是一种结构TAG,主要由1,3-二油酸-2-棕榈酸甘油三酯组成,将其添加到婴幼儿配方奶粉中可以模拟HMF的TAG结构。本文综述了过去25年中酶法合成sn-2棕榈酸甘油酯的研究进展及其在实验室条件下的制备流程,重点分析了结构TAG合成过程中所用的商业化sn-1,3位选择性脂肪酶、TAG结构分析的常用方法,以及一些市售sn-2棕榈酸甘油酯产品。另外,本文还对酶法合成sn-2棕榈酸甘油酯的前景进行了展望。

图片

图1

图2

图3

图4

参考文献

[ 1 ] Xu X. Production of specific-structured triacylglycerols by lipase-catalyzed reactions: a review. Eur J Lipid Sci Technol 2000;102(4):287–303. 链接1

[ 2 ] Jensen RG. The lipids in human milk. Prog Lipid Res 1996;35(1):53–92. 链接1

[ 3 ] Kallio H, Nylund M, Boström P, Yang B. Triacylglycerol regioisomers in human milk resolved with an algorithmic novel electrospray ionization tandem mass spectrometry method. Food Chem 2017;233:351–60. 链接1

[ 4 ] Zou L, Pande G, Akoh CC. Infant formula fat analogs and human milk fat: new focus on infant developmental needs. Annu Rev Food Sci Technol 2016;7:139–65. 链接1

[ 5 ] Akoh CC. Handbook of functional lipids. Boca Raton: CRC Press; 2005. 链接1

[ 6 ] Zou X, Huang J, Jin Q, Guo Z, Liu Y, Cheong L, et al. Lipid composition analysis of milk fats from different mammalian species: potential for use as human milk fat substitutes. J Agric Food Chem 2013;61(29):7070–80. 链接1

[ 7 ] Yao Y, Zhao G, Xiang J, Zou X, Jin Q, Wang X. Lipid composition and structural characteristics of bovine, caprine and human milk fat globules. Int Dairy J 2016;56:64–73. 链接1

[ 8 ] Jensen RG. Lipids in human milk. Lipids 1999;34(12):1243–71. 链接1

[ 9 ] Haddad I, Mozzon M, Strabbioli R, Frega NG. A comparative study of the composition of triacylglycerol molecular species in equine and human milks. Dairy Sci Technol 2012;92(1):37–56. 链接1

[10] Zhang X, Qi C, Zhang Y, Wei W, Jin Q, Xu Z, et al. Identification and quantification of triacylglycerols in human milk fat using ultra-performance convergence chromatography and quadrupole time-of-flight mass spectrometery with supercritical carbon dioxide as a mobile phase. Food Chem 2019;275:712–20. 链接1

[11] Mu H, Høy CE. The digestion of dietary triacylglycerols. Prog Lipid Res 2004;43(2):105–33. 链接1

[12] Innis SM, Dyer R, Quinlan P, Diersen-Schade D. Palmitic acid is absorbed as sn-2 monopalmitin from milk and formula with rearranged triacylglycerols and results in increased plasma triglyceride sn-2 and cholesteryl ester palmitate in piglets. J Nutr 1995;125(1):73–81. 链接1

[13] Lien EL. The role of fatty acid composition and positional distribution in fat absorption in infants. J Pediatr 1994;125(5 Pt 2):S62–8. 链接1

[14] Quinlan PT, Lockton S, Irwin J, Lucas AL. The relationship between stool hardness and stool composition in breast- and formula-fed infants. J Pediatr Gastroenterol Nutr 1995;20(1):81–90. 链接1

[15] Innis SM. Dietary triacylglycerol structure and its role in infant nutrition. Adv Nutr 2011;2(3):275–83. 链接1

[16] Bar-Yoseph F, Lifshitz Y, Cohen T. Review of sn-2 palmitate oil implications for infant health. Prostaglandins Leukot Essent Fatty Acids 2013;89 (4):139–43. 链接1

[17] Namal Senanayake SPJ, Shahidi F. Modification of fats and oils via chemical and enzymatic methods. In: Shahidi F, editor. Bailey’s industrial oil and fat products. Hoboken: John Wiley & Sons; 2005. 链接1

[18] Soumanou MM, Pérignon M, Villeneuve P. Lipase-catalyzed interesterification reactions for human milk fat substitutes production: a review. Eur J Lipid Sci Technol 2013;115(3):270–85. 链接1

[19] Ferreira-Dias S, Tecelão C. Human milk fat substitutes: advances and constraints of enzyme-catalyzed production. Lipid Technol 2014;26 (8):183–6. 链接1

[20] Kim BH, Akoh CC. Recent research trends on the enzymatic synthesis of structured lipids. J Food Sci 2015;80(8):C1713–24. 链接1

[21] Bornscheuer UT. Enzymes in lipid modification: an overview. In: Bornscheuer UT, editor. Lipid modification by enzymes and engineered microbes. Boulder: AOCS Press; 2018. p. 1–9. 链接1

[22] Macrae AR. Lipase-catalyzed interesterification of oils and fats. J Am Oil Chem Soc 1983;60(2 Pt 1):291–4. 链接1

[23] Adlercreutz P. Enzyme-catalysed lipid modification. Biotechnol Genet Eng Rev 1994;12(1):231–54. 链接1

[24] Kovac A, Stadler P, Haalck L, Spener F, Paltauf F. Hydrolysis and esterification of acylglycerols and analogs in aqueous medium catalyzed by microbial lipases. Biochim Biophys Acta 1996;1301(1–2):57–66. 链接1

[25] Stadler P, Kovac A, Haalck L, Spener F. Paltauf F. Stereoselectivity of microbial lipases. The substitution at position sn-2 of triacylglycerol analogs influences the stereoselectivity of different microbial lipases. Eur J Biochem 1995;227 (1–2):335–43. 链接1

[26] Pleiss J. Molecular basis of specificity and stereoselectivity of microbial lipases toward triacylglycerols. In: Bornscheuer UT, editor. Enzymes in lipid modification. Berlin: Wiley-VCH Verlag GmbH; 2000. p. 85–99. 链接1

[27] Villeneuve P, Pina M, Montet D, Graille J. Determination of lipase specificities through the use of chiral triglycerides and their racemics. Chem Phys Lipids 1995;76(1):109–13. 链接1

[28] Watanabe Y, Nagao T, Shimada Y. Control of the regiospecificity of Candida antarctica lipase by polarity. N Biotechnol 2009;26(1–2):23–8. 链接1

[29] Bornscheuer UT. Enzymes in lipid modification. Berlin: Wiley-VCH Verlag GmbH; 2000. 链接1

[30] Adlercreutz P. Immobilisation and application of lipases in organic media. Chem Soc Rev 2013;42(15):6406–36. 链接1

[31] Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. Engineering the third wave of biocatalysis. Nature 2012;485(7397): 185–94. 链接1

[32] Nagao T, Shimada Y, Sugihara A, Tominaga Y. Increase in stability of Fusarium heterosporum lipase. J Mol Catal B Enzym 2002;17(3–5):125–32. 链接1

[33] Eisenmenger MJ, Reyes-De-Corcuera JI. High hydrostatic pressure increased stability and activity of immobilized lipase in hexane. Enzyme Microb Technol 2009;45(2):118–25. 链接1

[34] Abdul Wahab R, Basri M, Raja Abdul Rahman RNZ, Salleh AB. Abdul Rahman MB, Leow TC. Development of a catalytically stable and efficient lipase through an increase in hydrophobicity of the oxyanion residue. J Mol Catal B Enzym 2015;122:282–8. 链接1

[35] Mu H, Porsgaard T. The metabolism of structured triacylglycerols. Prog Lipid Res 2005;44(6):430–48. 链接1

[36] Indelicato S, Bongiorno D, Pitonzo R, Di Stefano V, Calabrese V, Indelicato S, et al. Triacylglycerols in edible oils: determination, characterization, quantitation, chemometric approach and evaluation of adulterations. J Chromatogr A 2017;1515:1–16. 链接1

[37] Laakso P. Mass spectrometry of triacylglycerols. Eur J Lipid Sci Technol 2002;104(1):43–9. 链接1

[38] Buchgraber M, Ulberth F, Emons H, Anklam E. Triacylglycerol profiling by using chromatographic techniques. Eur J Lipid Sci Technol 2004;106 (9):621–48. 链接1

[39] Fuchs B, Süß R, Teuber K, Eibisch M, Schiller J. Lipid analysis by thin-layer chromatography—a review of the current state. J Chromatogr A 2011;1218 (19):2754–74. 链接1

[40] Ruiz-Samblás C, González-Casado A, Cuadros-Rodríguez L. Triacylglycerols determination by high-temperature gas chromatography in the analysis of vegetable oils and foods: a review of the past 10 years. Crit Rev Food Sci Nutr 2015;55(11):1618–31. 链接1

[41] Christie WW, Han X. Chromatographic analysis of lipids: general principles. In: Christie WW, Han X, editors. Lipid analysis. Cambridge: Woodhead Publishing Limited; 2012. 链接1

[42] Zhang X, Nie K, Zheng Y, Wang F, Deng L, Tan T. Lipase Candida sp. 99– 125coupled with b-cyclodextrin as additive synthesized the human milk fat substitutes. J Mol Catal B Enzym 2016;125:1–5. 链接1

[43] Zou X, Huang J, Jin Q, Guo Z, Cheong L, Xu X, et al. Preparation of human milk fat substitutes from lard by lipase-catalyzed interesterification based on triacylglycerol profiles. J Am Oil Chem Soc 2014;91(12):1987–98. 链接1

[44] Vyssotski M, Bloor SJ, Lagutin K, Wong H, Williams DBG. Efficient separation and analysis of triacylglycerols: quantitation of b-palmitate (OPO) in oils and infant formulas. J Agric Food Chem 2015;63(26):5985–92. 链接1

[45] Zheng M, Wang S, Xiang X, Shi J, Huang J, Deng Q, et al. Facile preparation of magnetic carbon nanotubes-immobilized lipase for highly efficient synthesis of 1,3-dioleoyl-2-palmitoylglycerol-rich human milk fat substitutes. Food Chem 2017;228:476–83. 链接1

[46] He Y, Qiu C, Guo Z, Huang J, Wang M, Chen B. Production of new human milk fat substitutes by enzymatic acidolysis of microalgae oils from Nannochloropsis oculata and Isochrysis galbana. Bioresour Technol 2017;238:129–38. 链接1

[47] Zou X, Jin Q, Guo Z, Xu X, Wang X. Preparation and characterization of human milk fat substitutes based on triacylglycerol profiles. J Am Oil Chem Soc 2016;93(6):781–92. 链接1

[48] Zou X, Jin Q, Guo Z, Xu X, Wang X. Preparation of human milk fat substitutes from basa catfish oil: combination of enzymatic acidolysis and modeled blending. Eur J Lipid Sci Technol 2016;118(11):1702–11. 链接1

[49] Liu C, Zhang Y, Zhang X, Nie K, Deng L, Wang F. The two-step synthesis of 1,3- oleoyl-2-palmitoylglycerol by Candida sp. 99–125 lipase. J Mol Catal B Enzym 2016;133(Supp 1):S1–5. 链接1

[50] Faustino AR, Osório NM, Tecelão C, Canet A, Valero F, Ferreira-Dias S. Camelina oil as a source of polyunsaturated fatty acids for the production of human milk fat substitutes catalyzed by a heterologous Rhizopus oryzae lipase. Eur J Lipid Sci Technol 2016;118(4):532–44. 链接1

[51] Zhao XY, Wang XD, Liu X, Zhu WJ, Mei YY, Li WW, et al. Structured lipids enriched with unsaturated fatty acids produced by enzymatic acidolysis of silkworm pupae oil using oleic acid. Eur J Lipid Sci Technol 2015;117 (6):879–89. 链接1

[52] Álvarez C, Akoh C. Enzymatic synthesis of infant formula fat analog enriched with capric acid. J Am Oil Chem Soc 2015;92(7):1003–14. 链接1

[53] Cai H, Li Y, Zhao M, Fu G, Lai J, Feng F. Immobilization, regiospecificity characterization and application of Aspergillus oryzae lipase in the enzymatic synthesis of the structured lipid 1,3-dioleoyl-2-palmitoylglycerol. PLoS ONE 2015;10(7):e0133857. 链接1

[54] Kotani K, Yamamoto Y, Hara S. Enzymatic preparation of human milk fat substitutes and their oxidation stability. J Oleo Sci 2015;64(3):275–81. 链接1

[55] Lee NK, Oh SW, Kwon DY, Yoon SH. Production of 1,3-dioleoyl-2-palmitoyl glycerol as a human milk fat substitute using enzymatic interesterification of natural fats and oils. Food Sci Biotechnol 2015;24(2):433–7. 链接1

[56] Liu SL, Dong XY, Wei F, Wang X, Lv X, Zhong J, et al. Ultrasonic pretreatment in lipase-catalyzed synthesis of structured lipids with high 1,3-dioleoyl-2- palmitoylglycerol content. Ultrason Sonochem 2015;23:100–8. 链接1

[57] Wang X, Zou W, Sun X, Zhang Y, Wei L, Jin Q, et al. Chemoenzymatic synthesis of 1,3-dioleoyl-2-palmitoylglycerol. Biotechnol Lett 2015;37 (3):691–6. 链接1

[58] Zou X, Jin Q, Guo Z, Huang J, Xu X, Wang X. Preparation of 1,3-dioleoyl-2- palmitoylglycerol-rich structured lipids from basa catfish oil: combination of fractionation and enzymatic acidolysis. Eur J Lipid Sci Technol 2016;118 (5):708–15. 链接1

[59] Wei W, Feng Y, Zhang X, Cao X, Feng F. Synthesis of structured lipid 1,3- dioleoyl-2-palmitoylglycerol in both solvent and solvent-free system. Lebensm Wiss Technol 2015;60(2):1187–94. 链接1

[60] Qin XL, Zhong JF, Wang YH, Yang B, Lan DM, Wang FH. 1,3-dioleoyl-2- palmitoylglycerol-rich human milk fat substitutes: production, purification, characterization and modeling of the formulation. Eur J Lipid Sci Technol 2014;116(3):282–90. 链接1

[61] Li R, Pande G, Sabir JSM, Baeshen NA, Akoh CC. Enrichment of refined olive oil with palmitic and docosahexaenoic acids to produce a human milk fat analogue. J Am Oil Chem Soc 2014;91(8):1377–85. 链接1

[62] Zou XG, Hu JN, Zhao ML, Zhu XM, Li HY, Liu XR, et al. Lipozyme RM IMcatalyzed acidolysis of Cinnamomum camphora seed oil with oleic acid to produce human milk fat substitutes enriched in medium-chain fatty acids. J Agric Food Chem 2014;62(43):10594–603. 链接1

[63] Pande G, Sabir JM, Baeshen N, Akoh C. Synthesis of infant formula fat analogs enriched with DHA from extra virgin olive oil and tripalmitin. J Am Oil Chem Soc 2013;90(9):1311–8. 链接1

[64] Turan D, Yesilçubuk NS, Akoh CC. Enrichment of sn-2 position of hazelnut oil with palmitic acid: optimization by response surface methodology. Lebensm Wiss Technol 2013;50(2):766–72. 链接1

[65] Pande G, Sabir JSM, Baeshen NA, Akoh CC. Enzymatic synthesis of extra virgin olive oil based infant formula fat analogues containing ARA and DHA: onestage and two-stage syntheses. J Agric Food Chem 2013;61(44):10590–8. 链接1

[66] Turan D, Sahin Yesilçubuk N, Akoh CC. Production of human milk fat analogue containing docosahexaenoic and arachidonic acids. J Agric Food Chem 2012;60(17):4402–7. 链接1

[67] Tecelão C, Rivera I, Sandoval G, Ferreira-Dias S. Carica papaya latex: a low-cost biocatalyst for human milk fat substitutes production. Eur J Lipid Sci Technol 2012;114(3):266–76. 链接1

[68] Yüksel A, Sahin Yesilçubuk N. Enzymatic production of human milk fat analogues containing stearidonic acid and optimization of reactions by response surface methodology. Lebensm Wiss Technol 2012;46(1):210–6. 链接1

[69] Zou X, Huang J, Jin Q, Liu Y, Song Z, Wang X. Lipase-catalyzed synthesis of human milk fat substitutes from palm stearin in a continuous packed bed reactor. J Am Oil Chem Soc 2012;89(8):1463–72. 链接1

[70] Cheong LZ, Xu X. Lard-based fats healthier than lard: enzymatic synthesis, physicochemical properties and applications. Lipid Technol 2011;23(1):6–9. 链接1

[71] da Silva RC, Soares FASDM, Fernandes TG, Castells ALD, da Silva KCG, Gonçalves MIA, et al. Interesterification of lard and soybean oil blends catalyzed by immobilized lipase in a continuous packed bed reactor. J Am Oil Chem Soc 2011;88(12):1925–33. 链接1

[72] Esteban L, Jimenez MJ, Hita E, Gonzalez PA, Martin L, Robles A. Production of structured triacylglycerols rich in palmitic acid at sn-2 position and oleic acid at sn-1,3 positions as human milk fat substitutes by enzymatic acidolysis. Biochem Eng J 2011;54(1):62–9. 链接1

[73] Ilyasoglu H, Gultekin-Ozguven M, Ozcelik B. Production of human milk fat substitute with medium-chain fatty acids by lipase-catalyzed acidolysis: optimization by response surface methodology. Lebensm Wiss Technol 2011;44(4):999–1004. 链接1

[74] Qin XL, Wang YM, Wang YH, Huang HH, Yang B. Preparation and characterization of 1,3-dioleoyl-2-palmitoylglycerol. J Agric Food Chem 2011;59(10):5714–9. 链接1

[75] Zou XQ, Huang JH, Jin QZ, Liu YF, Song ZH, Wang XG. Lipase-catalyzed preparation of human milk fat substitutes from palm stearin in a solvent-free system. J Agricult Food Chem 2011;59(11):6055–63. 链接1

[76] Jiménez MJ, Esteban L, Robles A, Hita E, González PA, Muñío MM, et al. Production of triacylglycerols rich in palmitic acid at position 2 as intermediates for the synthesis of human milk fat substitutes by enzymatic acidolysis. Process Biochem 2010;45(3):407–14. 链接1

[77] Lee JH, Son JM, Akoh CC, Kim MR, Lee KT. Optimized synthesis of 1,3-dioleoyl- 2-palmitoylglycerol-rich triacylglycerol via interesterification catalyzed by a lipase from Thermomyces lanuginosus. N Biotechnol 2010;27(1):38–45. 链接1

[78] Tecelão C, Silva J, Dubreucq E, Ribeiro MH, Ferreira-Dias S. Production of human milk fat substitutes enriched in omega-3 polyunsaturated fatty acids using immobilized commercial lipases and Candida parapsilosis lipase/ acyltransferase. J Mol Catal, B Enzym 2010;65(1–4):122–7. 链接1

[79] Wang YH, Qin XL, Zhu QS, Zhou R, Yang B, Li L. Lipase-catalyzed acidolysis of lard for the production of human milk fat substitute. Eur Food Res Technol 2010;230(5):769–77. 链接1

[80] Pina-Rodriguez AM, Akoh CC. Enrichment of amaranth oil with ethyl palmitate at the sn-2 position by chemical and enzymatic synthesis. J Agric Food Chem 2009;57(11):4657–62. 链接1

[81] Guncheva M, Zhiryakova D, Radchenkova N, Kambourova M. Acidolysis of tripalmitin with oleic acid catalyzed by a newly isolated thermostable lipase. J Am Oil Chem Soc 2008;85(2):129–32. 链接1

[82] Maduko CO, Akoh CC, Park YW. Enzymatic production of infant milk fat analogs containing palmitic acid: optimization of reactions by response surface methodology. J Dairy Sci 2007;90(5):2147–54. 链接1

[83] Nielsen NS, Yang T, Xu X, Jacobsen C. Production and oxidative stability of a human milk fat substitute produced from lard by enzyme technology in a pilot packed-bed reactor. Food Chem 2006;94(1):53–60. 链接1

[84] Sahín N, Akoh CC, Karaalí A. Human milk fat substitutes containing omega-3 fatty acids. J Agric Food Chem 2006;54(10):3717–22. 链接1

[85] Srivastava A, Akoh CC, Chang SW, Lee GC, Shaw JF. Candida rugosa lipase LIP1- catalyzed transesterification to produce human milk fat substitute. J Agric Food Chem 2006;54(14):5175–81. 链接1

[86] Sahin N, Akoh C, Karaali A. Enzymatic production of human milk fat substitutes containing c-linolenic acid: optimization of reactions by response surface methodology. J Am Oil Chem Soc 2005;82(8):549–57. 链接1

[87] Sahin N, Akoh CC, Karaali A. Lipase-catalyzed acidolysis of tripalmitin with hazelnut oil fatty acids and stearic acid to produce human milk fat substitutes. J Agric Food Chem 2005;53(14):5779–83. 链接1

[88] Chen ML, Vali SR, Lin JY, Ju YH. Synthesis of the structured lipid 1,3-dioleoyl- 2-palmitoylglycerol from palm oil. J Am Oil Chem Soc 2004;81(6):525–32. 链接1

[89] Yang T, Xu X, He C, Li L. Lipase-catalyzed modification of lard to produce human milk fat substitutes. Food Chem 2003;80(4):473–81. 链接1

[90] Nagao T, Shimada Y, Sugihara A, Murata A, Komemushi S, Tominaga Y. Use of thermostable Fusarium heterosporum lipase for production of structured lipid containing oleic and palmitic acids in organic solvent-free system. J Am Oil Chem Soc 2001;78(2):167–72. 链接1

[91] Shimada Y, Nagao T, Hamasaki Y, Akimoto K, Sugihara A, Fujikawa S, et al. Enzymatic synthesis of structured lipid containing arachidonic and palmitic acids. J Am Oil Chem Soc 2000;77(1):89–93. 链接1

[92] Schmid U, Bornscheuer UT, Soumanou MM, McNeill GP, Schmid RD. Highly selective synthesis of 1,3-oleoyl-2-palmitoylglycerol by lipase catalysis. Biotechnol Bioeng 1999;64(6):678–84. 链接1

[93] Mukherjee KD, Kiewitt I. Structured triacylglycerols resembling human milk fat by transesterification catalyzed by papaya (Carica papaya) latex. Biotechnol Lett 1998;20(6):613–6. 链接1

[94] Schmid U, Bornscheuer U, Soumanou M, McNeill G, Schmid R. Optimization of the reaction conditions in the lipase-catalyzed synthesis of structured triglycerides. J Am Oil Chem Soc 1998;75(11):1527–31. 链接1

[95] Balcão VM, Malcata FX. Lipase-catalyzed modification of butterfat via acidolysis with oleic acid. J Mol Catal B Enzym 1997;3(1–4):161–9. 链接1

[96] Lísa M, Velínská H, Holcˇapek M. Regioisomeric characterization of triacylglycerols using silver-ion HPLC/MS and randomization synthesis of standards. Anal Chem 2009;81(10):3903–10. 链接1

[97] Fraga CG, Prazen BJ, Synovec RE. Comprehensive two-dimensional gas chromatography and chemometrics for the high-speed quantitative analysis of aromatic isomers in a jet fuel using the standard addition method and an objective retention time alignment algorithm. Anal Chem 2000;72(17):4154–62. 链接1

[98] Holcˇapek M, Dvorˇáková H, Lísa M, Girón AJ, Sandra P, Cvacˇka J. Regioisomeric analysis of triacylglycerols using silver-ion liquid chromatography– atmospheric pressure chemical ionization mass spectrometry: comparison of five different mass analyzers. J Chromatogr A 2010;1217(52):8186–94. 链接1

[99] Zou XQ, Huang JH, Jin QZ, Guo Z, Liu YF, Cheong LZ, et al. Model for human milk fat substitute evaluation based on triacylglycerol composition profile. J Agric Food Chem 2013;61(1):167–75. 链接1

[100] Smith KW. Structured triacylglycerols: properties and processing for use in food. In: Talbot G, editor. Specialty oils and fats in food and nutrition. London: Woodhead Publishing; 2015. p. 207–18. 链接1

[101] Ferreira ML, Tonetto GM. Examples of successful industrial synthesis of structured diglycerides and triglycerides, enzymatic synthesis of structured triglycerides. In: Ferreira ML, Tonetto GM, editors. Enzymatic synthesis of structured triglycerides from laboratory to industry. Berlin: Springer International Publishing; 2017. p. 73–9. 链接1

[102] Kurvinen JP, Sjövall O, Kallio H. Molecular weight distribution and regioisomeric structure of triacylglycerols in some common human milk substitutes. J Am Oil Chem Soc 2002;79(1):13–22. 链接1

[103] Happe RP, Gambelli L. Infant formula. In: Talbot G, editor. Specialty oils and fats in food and nutrition. London: Woodhead Publishing; 2015. p. 285–315. 链接1

[104] Yan Y, Wang Z, Wang X, Wang Y, Xiang J, Kothapalli KSD, et al. Branched chain fatty acids positional distribution in human milk fat and common human food fats and uptake in human intestinal cells. J Funct Foods 2017;29:172–7. 链接1

相关研究