期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第11期 doi: 10.1016/j.eng.2020.02.018

增材制造技术的医疗应用进展

a Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
b National Enterprise for Nanoscience and Nanotechnology, Nanoscience Institute, National Research Council, Pisa I-56127, Italy
c Department of Physics, University of Pisa, Pisa I-56127, Italy
d Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China

收稿日期: 2019-08-15 修回日期: 2019-12-20 录用日期: 2020-02-20 发布日期: 2020-09-15

下一篇 上一篇

摘要

在过去的几十年间,增材制造(additive manufacturing, AM)技术可低成本、高效益地制造几何外形复杂的物体,在医疗行业得到了快速的发展和广泛的应用。在本文中,我们讨论了AM技术在制药学、医用植入物和医疗器械领域中的最新应用进展。口服和透皮给药的药物可以通过多种AM技术制备,不同类型的软硬医用植入物也可通过AM技术实现组织工程结构的制作。此外,利用AM技术还发明了用于诊断和治疗各种病理情况的医疗器械。越来越多的研究揭示了AM技术在医疗应用中的巨大潜力。本文目的是阐述AM技术在医学领域的应用进展以及目前的局限性。

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 2016;61 (5):315–60. 链接1

[ 2 ] Zadpoor AA. Design for additive bio-manufacturing: from patient-specific medical devices to rationally designed meta-biomaterials. Int J Mol Sci 2017;18(8):1607. 链接1

[ 3 ] Hu Q, Sun XZ, Parmenter CDJ, Fay MW, Smith EF, Ranceet GA, et al. Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction. Sci Rep 2017;7:17150. 链接1

[ 4 ] Mchugh KJ, Nguyen TD, Linehan AR, Yang D, Behrens AM, Rose S, et al. Fabrication of fillable microparticles and other complex 3D microstructures. Science 2017;357(6356):1138–42. 链接1

[ 5 ] Chen RK, Jin Y, Wensman J, Shih A. Additive manufacturing of custom orthoses and prostheses—a review. Addit Manuf 2016;12:77–89. 链接1

[ 6 ] Cuellar JS, Smit G, Zadpoor AA, Breedveld P. Ten guidelines for the design of non-assembly mechanisms: the case of 3D-printed prosthetic hands. Proc Inst Mech Eng H 2018;232(9):962–71. 链接1

[ 7 ] Technical considerations for additive manufactured medical devices— guidance for industry and food and drug administration staff [Internet]. Washington, DC: United States Food and Drug Administration; 2017 Dec 5 [cited 2019 Aug 15]. Available from: https://www.fda.gov/media/ 97633/download. 链接1

[ 8 ] Jones DB, Sung R, Weinberg C, Korelitz T, Andrews R. Three-dimensional modeling may improve surgical education and clinical practice. Surg Innov 2016;23(2):189–95. 链接1

[ 9 ] Fina F, Goyanes A, Madla CM, Awad A, Trenfield SJ, Kuek JM, et al. 3D printing of drug-loaded gyroid lattices using selective laser sintering. Int J Pharm 2018;547(1–2):44–52. 链接1

[10] Goyanes A, Scarpa M, Kamlow M, Gaisford S, Basit AW, Orlub M. Patient acceptability of 3D printed medicines. Int J Pharm 2017;530(1–2):71–8. 链接1

[11] Feinberg AW, Miller JS. Progress in three-dimensional bioprinting. MRS Bull 2017;42(8):557–62. 链接1

[12] Guzzi EA, Tibbitt MW. Additive manufacturing of precision biomaterials. Adv Mater 2019;32(13):1901994. 链接1

[13] Guzzi EA, Bovone G, Tibbitt MW. Universal nanocarrier ink platform for biomaterials additive manufacturing. Small 2019;15(1):1905421. 链接1

[14] Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda J, et al. From shape to function: the next step in bioprinting. Adv Mater 2020;32(12):1906423. 链接1

[15] Gebhardt A, Schmidt FM, Hötter JS, Sokalla W, Sokalla P. Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry. Phys Procedia 2010;5:543–9. 链接1

[16] Novakov T, Jackson MJ, Robinson GM, Ahmed W, Phoenix DA. Laser sintering of metallic medical materials—a review. Int J Adv Manuf Technol 2017;93(5–8):2723–52. 链接1

[17] Marga F, Jakab K, Khatiwala C, Shepherd B, Dorfman S, Hubbard B, et al. Toward engineering functional organ modules by additive manufacturing. Biofabrication 2012;4(2):022001. 链接1

[18] Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT, HunterSmith DJ. Emerging applications of bedside 3D printing in plastic surgery. Front Surg 2015;2:25. 链接1

[19] Telfer S, Pallari J, Munguia J, Dalgarno K, McGeough M, Woodburn J. Embracing additive manufacture: implications for foot and ankle orthosis design. BMC Musculoskelet Disord 2012;13:84. 链接1

[20] Rankin TM, Giovinco NA, Cucher DJ, Watts G, Hurwitz B, Armstrong DG. Three-dimensional printing surgical instruments: are we there yet? J Surg Res 2014;189(2):193–7.

[21] McGurk M, Amis AA, Potamianos P, Goodger NM. Rapid prototyping techniques for anatomical modelling in medicine. Ann R Coll Surg Engl 1997;79(3):169–74. 链接1

[22] Kurenov SN, Ionita C, Sammons D, Demmy TL. Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery. J Thorac Cardiovasc Surg 2015;149(4):973–9. 链接1

[23] Sun YJ, Soh S. Printing tablets with fully customizable release profiles for personalized medicine. Adv Mater 2015;27(47):7847–53. 链接1

[24] Lim SH, Kathuria H, Tan JJY, Kang L. 3D printed drug delivery and testing systems—a passing fad or the future? Adv Drug Deliv Rev 2018;132:139–68. 链接1

[25] Kollamaram G, Croker DM, Walker GM, Goyanes A, Basitbc AW, Gaisford S. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int J Pharm 2018;545(1–2):144–52.

[26] Louzao I, Koch B, Taresco V, Ruiz-Cantu L, Irvine DJ, Roberts CJ, et al. Identification of novel ‘‘inks” for 3D printing using high-throughput screening: bioresorbable photocurable polymers for controlled drug delivery. ACS Appl Mater Interfaces 2018;10(8):6841–8. 链接1

[27] Melocchi A, Parietti F, Maccagnan S, Ortenzi MA, Antenucci S, BriaticoVangosa F, et al. Industrial development of a 3D-printed nutraceutical delivery platform in the form of a multicompartment HPC capsule. AAPS PharmSciTech 2018;19(8):3343–54. 链接1

[28] Goyanes A, Allahham N, Trenfield SJ, Stoyanovd E, Gaisford S, Basit AW. Direct powder extrusion 3D printing: fabrication of drug products using a novel single-step process. Int J Pharm 2019;567:118471. 链接1

[29] Vithani K, Goyanes A, Jannin V, Basit AW, Gaisford S, Boyd BJ. An overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems. Pharm Res 2018;36(1):4. 链接1

[30] Pereira BC, Isreb A, Forbes RT, Dores F, Habashy R, Petit JB, et al. ‘Temporary Plasticiser’: a novel solution to fabricate 3D printed patient-centred cardiovascular ‘polypill’ architectures. Eur J Pharm Biopharm 2019;135: 94–103. 链接1

[31] Awad A, Fina F, Trenfield SJ, Patel P, Goyanes A, Gaisford S, et al. 3D printed pellets (miniprintlets): a novel, multi-drug, controlled release platform technology. Pharm 2019;11(4):148. 链接1

[32] Li Q, Guan X, Cui M, Zhu Z, Chen K, Wen H, et al. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. Int J Pharm 2018;535(1–2):325–32. 链接1

[33] Arafat B, Wojsz M, Isreb A, Forbes RT, Isreb M, Ahmed W, et al. Tablet fragmentation without a disintegrant: a novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets. Eur J Pharm Sci 2018;118:191–9. 链接1

[34] Kyobula M, Adedeji A, Alexander MR, Saleh E, Wildman R, Ashcroft I, et al. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J Control Release 2017;261:207–15. 链接1

[35] Verstraete G, Samaro A, Grymonpré W, Vanhoorne V, Van Snick B, Booneet MN, et al. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Int J Pharm 2018;536(1):318–25. 链接1

[36] Tagami T, Nagata N, Hayashi N, Ogawa E, Fukushige K, Sakai N, et al. Defined drug release from 3D-printed composite tablets consisting of drugloaded polyvinylalcohol and a water-soluble or water-insoluble polymer filler. Int J Pharm 2018;543(1–2):361–7. 链接1

[37] Haring AP, Tong Y, Halper J, Johnson BN. Programming of multicomponent temporal release profiles in 3D printed polypills via core-shell, multilayer, and gradient concentration profiles. Adv Healthc Mater 2018;7(16):1800213. 链接1

[38] Maroni A, Melocchi A, Parietti F, Foppoli A, Zema L, Gazzaniga A. 3D printed multi-compartment capsular devices for two-pulse oral drug delivery. J Control Release 2017;268:10–8. 链接1

[39] Gioumouxouzis CI, Chatzitaki AT, Karavasili C, Katsamenis OL, Tzetzis D, Mystiridou E, et al. Controlled release of 5-fluorouracil from alginate beads encapsulated in 3D printed pH-responsive solid dosage forms. AAPS PharmSciTech 2018;19(8):3362–75. 链接1

[40] Beck RCR, Chaves PS, Goyanes A, Vukosavljevic B, Buanz A, Windbergs M, et al. 3D printed tablets loaded with polymeric nanocapsules: an innovative approach to produce customized drug delivery systems. Int J Pharm 2017;528 (1–2):268–79. 链接1

[41] Markl D, Zeitler JA, Rasch C, Michaelsen MH, Müllertz A, Rantanen J, et al. Analysis of 3D prints by X-ray computed microtomography and terahertz pulsed imaging. Pharm Res 2017;34(5):1037–52. 链接1

[42] Okwuosa TC, Soares C, Gollwitzer V, Habashy R, Timmins P, Alhnan MA. On demand manufacturing of patient-specific liquid capsules via coordinated 3D printing and liquid dispensing. Eur J Pharm Sci 2018;118:134–43. 链接1

[43] Kwak MK, Jeong HE, Suh KY. Rational design and enhanced biocompatibility of a dry adhesive medical skin patch. Adv Mater 2011;23(34):3949–53. 链接1

[44] Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release 2016;234:41–8. 链接1

[45] Muwaffak Z, Goyanes A, Clark V, Basit AW, Hiltona ST, Gaisford S. Patientspecific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm 2017;527(1–2):161–70. 链接1

[46] Wang JC, Zheng H, Chang MW, Ahmad Z, Li JS. Preparation of active 3D film patches via aligned fiber electrohydrodynamic (EHD) printing. Sci Rep 2017;7:43924. 链接1

[47] Ye Y, Yu J, Wang C, Nguyen NY, Walker GM, Buse JB, et al. Microneedles integrated with pancreatic cells and synthetic glucose-signal amplifiers for smart insulin delivery. Adv Mater 2016;28(16):3115–21. 链接1

[48] Pere CPP, Economidou SN, Lall G, Ziraud C, Boateng JS, Alexander BD, et al. 3D printed microneedles for insulin skin delivery. Int J Pharm 2018;544 (2):425–32. 链接1

[49] Caudill CL, Perry JL, Tian S, Luft JC, DeSimone JM. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. J Control Release 2018;284:122–32. 链接1

[50] Luzuriaga MA, Berry DR, Reagan JC, Smaldone RA, Gassensmith JJ. Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip 2018;18(8):1223–30. 链接1

[51] Lim SH, Ng JY, Kang L. Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger. Biofabrication 2017;9(1):015010. 链接1

[52] Sahlabadi M, Hutapea P. Novel design of honeybee-inspired needles for percutaneous procedure. Bioinspir Biomim 2018;13(3):036013. 链接1

[53] Yan C, Hao L, Hussein A, Young P. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J Mech Behav Biomed Mater 2015;51:61–73. 链接1

[54] Haglin JM, Eltorai AEM, Gil JA, Marcaccio SE, Botero-Hincapie J, Daniels AH. Patient-specific orthopaedic implants. Orthop Surg 2016;8(4):417–24. 链接1

[55] Zhang D, Qiu D, Gibson MA, Zheng Y, Fraser HL, StJohn DH, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature 2019;576(7785):91–5. 链接1

[56] Chang B, Song W, Han T, Yan J, Li F, Zhao L, et al. Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Acta Biomater 2016;33:311–21. 链接1

[57] Barba A, Diez-Escudero A, Maazouz Y, Rappe K, Espanol M, Montufar EB, et al. Osteoinduction by foamed and 3D-printed calcium phosphate scaffolds: effect of nanostructure and pore architecture. ACS Appl Mater Interfaces 2017;9(48):41722–36. 链接1

[58] Bijukumar DR, McGeehan C, Mathew MT. Regenerative medicine strategies in biomedical implants. Curr Osteoporos Rep 2018;16(3):236–45. 链接1

[59] Cipitria A, Reichert JC, Epari DR, Saifzadeh S, Berner A, Schell H, et al. Polycaprolactone scaffold and reduced rhBMP-7 dose for the regeneration of critical-sized defects in sheep tibiae. Biomaterials 2013;34(38):9960–8. 链接1

[60] Ren Y, Zou Y, Liu Y, Zhou X, Ma J, Zhao D, et al. Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nat Mater 2020;19:203–11. 链接1

[61] Chen SG, Yang J, Jia YG, Lu B, Ren L. TiO2 and PEEK reinforced 3D printing PMMA composite resin for dental denture base applications. Nanomaterials 2019;9(7):1049. 链接1

[62] Tahayeri A, Morgan M, Fugolin AP, Bompolaki D, Athirasala A, Pfeifer CS, et al. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater 2018;34(2):192–200. 链接1

[63] Grigoryan B, Paulsen SJ, Corbett DC, Sazer DW, Fortin CL, Zaita AJ, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 2019;364(6439):458–64. 链接1

[64] Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M, Miyoshi T, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods 2019;16(3):255–62. 链接1

[65] Johnson BN, Lancaster KZ, Hogue IB, Meng F, Kong YL, Enquist LW, et al. 3D printed nervous system on a chip. Lab Chip 2016;16(8):1393–400. 链接1

[66] Melhem MR, Park J, Knapp L, Reinkensmeyer L, Cvetkovic C, Flewellyn J, et al. 3D printed stem-cell-laden, microchanneled hydrogel patch for the enhanced release of cell-secreting factors and treatment of myocardial infarctions. ACS Biomater Sci Eng 2017;3(9):1980–7. 链接1

[67] Lee H, Cho DW. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip 2016;16 (14):2618–25. 链接1

[68] Sciancalepore AG, Sallustio F, Girardo S, Passione LG, Camposeo A, Mele E, et al. A bioartificial renal tubule device embedding human renal stem/ progenitor cells. PLoS ONE 2014;9(1):e87496. 链接1

[69] Cui H, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for organ regeneration. Adv Healthc Mater 2017;6(1):1601118. 链接1

[70] He Y, Xue G, Fu J. Fabrication of low cost soft tissue prostheses with the desktop 3D printer. Sci Rep 2014;4:6973. 链接1

[71] Unkovskiy A, Spintzyk S, Brom J, Huettig F, Keutel C. Direct 3D printing of silicone facial prostheses: a preliminary experience in digital workflow. J Prosthet Dent 2018;120(2):303–8. 链接1

[72] Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE. Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med 2013;368 (21):2043–5. 链接1

[73] Qiu K, Haghiashtiani G, McAlpine MC. 3D printed organ models for surgical applications. Annu Rev Anal Chem 2018;11(1):287–306. 链接1

[74] Zein NN, Hanouneh IA, Bishop PD, Samaan M, Eghtesad B, Quintini C, et al. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transpl 2013;19(12):1304–10. 链接1

[75] Silberstein JL, Maddox MM, Dorsey P, Feibus A, Thomas R, Lee BR. Physical models of renal malignancies using standard cross-sectional imaging and 3- dimensional printers: a pilot study. Urology 2014;84(2):268–73. 链接1

[76] Witowski JS, Pedziwiatr M, Major P, Budzyn´ ski A. Cost-effective, personalized, 3D-printed liver model for preoperative planning before laparoscopic liver hemihepatectomy for colorectal cancer metastases. Int J Comput Assist Radiol Surg 2017;12(12):2047–54. 链接1

[77] Cheung CL, Looi T, Lendvay TS, Drake JM, Farhat WA. Use of 3-dimensional printing technology and silicone modeling in surgical simulation: development and face validation in pediatric laparoscopic pyeloplasty. J Surg Educ 2014;71(5):762–7. 链接1

[78] Ryan JR, Moe TG, Richardson R, Frakes DH, Nigro JJ, Pophal S. A novel approach to neonatal management of tetralogy of fallot, with pulmonary atresia, and multiple aortopulmonary collaterals. JACC Cardiovasc Imaging 2015;8(1):103–4. 链接1

[79] Valverde I. Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions. Rev Esp Cardiol 2017;70(4):282–91. 链接1

[80] Marks M, Alexander A, Matsumoto J, Matsumoto J, Morris J, Petersen R, et al. Creating three dimensional models of Alzheimer’s disease. 3D Print Med 2017;3(13):1–11. 链接1

[81] Pham MS, Liu C, Todd I, Lertthanasarn J. Damage-tolerant architected materials inspired by crystal microstructure. Nature 2019;565 (7739):305–11. 链接1

[82] Herbert N, Simpson D, Spence WD, Ion W. A preliminary investigation into the development of 3D printing of prosthetic sockets. J Rehabil Res Dev 2005;42(2):141–6. 链接1

[83] Zuniga JM, Dimitrios K, Peck JL, Srivastava R, Pierce JE, Dudley DR, et al. Coactivation index of children with congenital upper limb reduction deficiencies before and after using a wrist-driven 3D printed partial hand prosthesis. J Neuroeng Rehabil 2018;15:48. 链接1

[84] Paterson AM, Bibb R, Campbell RI, Bingham G. Comparing additive manufacturing technologies for customised wrist splints. Rapid Prototyp J 2015;21(3):230–43. 链接1

[85] Rogers B, Bosker GW, Crawford RH, Faustini MC, Neptune RR, Walden G, et al. Advanced trans-tibial socket fabrication using selective laser sintering. Prosthet Orthot Int 2007;31(1):88–100. 链接1

[86] Hsu LH, Huang GF, Lu CT, Hong TY, Liu SH. The development of a rapid prototyping prosthetic socket coated with a resin layer for transtibial amputees. Prosthet Orthot Int 2010;34(1):37–45. 链接1

[87] Christ S, Schnabel M, Vorndran E, Groll J, Gbureck U. Fiber reinforcement during 3D printing. Mater Lett 2015;139:165–8. 链接1

[88] Liu K, Zhang Q, Li X, Zhao C, Quan X, Zhao R, et al. Preliminary application of a multi-level 3D printing drill guide template for pedicle screw placement in severe and rigid scoliosis. Eur Spine J 2017;26(6):1684–9. 链接1

[89] Wong JY, Pfahnl AC. 3D printing of surgical instruments for long-duration space missions. Aviat Space Environ Med 2014;85(7):758–63. 链接1

[90] Navajas EV, ten Hove M. Three-dimensional printing of a transconjunctival vitrectomy trocar-cannula system. Ophthalmologica 2017;237(2):119–22. 链接1

[91] Walker JG, Licqurish S, Chiang PPC, Pirotta M, Emery JD. Cancer risk assessment tools in primary care: a systematic review of randomized controlled. Ann Fam Med 2015;13(5):480–9. 链接1

[92] Walter BM, Hann A, Frank R, Meining A. A 3D-printed cap with sideoptics for colonoscopy: a randomized ex vivo study. Endoscopy 2017;49(8):808–12. 链接1

[93] Ko WJ, Song GW, Hong SP, Kwon C, Hahm KB, Cho JY. Novel 3D-printing technique for caps to enable tailored therapeutic endoscopy. Dig Endosc 2016;28(2):131–8. 链接1

[94] Steinemann DC, Müller PC, Apitz M, Nickel F, Kenngott HG, Müller-Stich BP, et al. An ad hoc three dimensionally printed tool facilitates intraesophageal suturing in experimental surgery. J Surg Res 2018;223:87–93. 链接1

[95] Epaminonda E, Drakos T, Kalogirou C, Theodoulou M, Yiallouras C, Damianou C. MRI guided focused ultrasound robotic system for the treatment of gynaecological tumors. Int J Med Robot Comput Assist Surg 2016;12 (1):46–52. 链接1

[96] Chen J, Pickett T, Langell A, Trane A, Charlesworth B, Loken K, et al. Industryacademic partnerships: an approach to accelerate innovation. J Surg Res 2016;205(1):228–33. 链接1

[97] Menikou G, Yiallouras C, Yiannakou M, Damianou C. MRI-guided focused ultrasound robotic system for the treatment of bone cancer. Int J Med Robot Comput Assist Surg 2017;13(1):e1753. 链接1

[98] Peikari M, Chen TK, Burdette EC, Fichtinger G. Section-thickness profiling for brachytherapy ultrasound guidance. In: Proceedings of the Conference on Medical Imaging 2011: Visualization, Image-Guided Procedures, and Modeling; 2011 Feb 13–15; Lake Buena Vista, FL, USA; 2011.

[99] Dikici S, Dikici BA, Eser H, Gezgin E, Baser Ö, Sahin S, et al. Development of a 2-DOF uterine manipulator with LED illumination system as a new transvaginal uterus amputation device for gynecological surgeries. Minim Invasive Ther Allied Technol 2018;27(3):177–85. 链接1

[100] Rugg AL, Nelson LY, Timoshchuk MAI, Seibel EJ. Design and fabrication of a disposable dental handpiece for clinical use of a new laser-based therapymonitoring system. J Med Device 2016;10(1):011005. 链接1

[101] Traeger MF, Roppenecker DB, Leininger MR, Schnoes F, Lueth TC. Design of a spine-inspired kinematic for the guidance of flexible instruments in minimally invasive surgery. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems; 2014 Sep 14–18; Chicago, IL, USA; 2014. 链接1

[102] Zizer E, Roppenecker D, Helmes F, Hafner S, Krieger Y, Lüth T, et al. A new 3Dprinted overtube system for endoscopic submucosal dissection: first results of a randomized study in a porcine model. Endoscopy 2016;48(8):762–5. 链接1

[103] Krieger YS, Roppenecker DB, Stolzenburg JU, Lueth TC. First step towards an automated designed multi-arm snake-like robot for minimally invasive surgery. In: Proceedings of the 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob); 2016 Jun 26–29; Singapore; 2016. 链接1

相关研究