期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第5期 doi: 10.1016/j.eng.2020.03.008

聚酰胺反渗透膜中水传递阻力的分子模拟——界面阻力和内部阻力

State Key Laboratory of Materials-Oriented Chemical Engineering & College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China

收稿日期: 2019-01-08 修回日期: 2019-03-28 录用日期: 2019-08-02 发布日期: 2020-03-23

下一篇 上一篇

摘要

在分子水平上理解水分子在聚酰胺(PA)反渗透(RO)膜中的传递阻力对于这些膜的设计、制备和应用具有非常重要的指导意义。本文通过分子模拟来计算总传递阻力,并将其分成两部分——内部阻力和界面阻力。内部阻力取决于PA层的厚度,而界面阻力则不然。基于5 nm 厚的PA层的模拟显示界面阻力对总阻力的贡献率很大(> 62%)。然而,现实世界中,对于具有200 nm PA层的RO膜,界面阻力起次要作用,其贡献率低于10%。这表明,当使用典型方法估算RO膜的传递阻力时,存在不准确的风险,因为该方法简单地将5 nm厚的PA层的总阻力进行倍增,使得界面阻力被错误放大。此外,界面阻力和内部阻力均取决于PA层的化学性质。我们的模拟显示,减少PA层中剩余羧基的数量会导致内部阻力降低,因此,可以在不牺牲离子截留的情况下改善水的渗透性,这与实验结果高度吻合。

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM. Science and technology for water purification in the coming decades. Nature 2008;452(7185):301–10. 链接1

[ 2 ] Drioli E, Stankiewicz AI, Macedonio F. Membrane engineering in process intensification—an overview. J Membr Sci 2011;380(1–2):1–8. 链接1

[ 3 ] Li D, Wang HT. Recent developments in reverse osmosis desalination membranes. J Mater Chem 2010;20(22):4551–66. 链接1

[ 4 ] Petersen RJ. Composite reverse osmosis and nanofiltration membranes. J Membr Sci 1993;83(1):81–150. 链接1

[ 5 ] Shenvi SS, Isloor AM, Ismail AF. A review on RO membrane technology: developments and challenges. Desalination 2015;368:10–26. 链接1

[ 6 ] Xu GR, Wang JN, Li CJ. Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: surface modifications and nanoparticles incorporations. Desalination 2013;328:83–100. 链接1

[ 7 ] Takaba H, Koshita R, Mizukami K, Oumi Y, Ito N, Kubo M, et al. Molecular dynamics simulation of iso- and n-butane permeations through a ZSM-5 type silicalite membrane. J Membr Sci 1997;134(1):127–39. 链接1

[ 8 ] Hughes ZE, Gale JD. A computational investigation of the properties of a reverse osmosis membrane. J Mater Chem 2010;20(36):7788–99. 链接1

[ 9 ] Kotelyanskii MJ, Wagner NJ, Paulaitis ME. Molecular dynamics simulation study of the mechanisms of water diffusion in a hydrated, amorphous polyamide. Comput Theor Polym Sci 1999;9(3–4):301–6. 链接1

[10] Kotelyanskii MJ, Wagner NJ, Paulaitis ME. Atomistic simulation of water and salt transport in the reverse osmosis membrane FT-30. J Membr Sci 1998;139 (1):1–16. 链接1

[11] Luo Y, Harder E, Faibish RS, Roux B. Computer simulations of water flux and salt permeability of the reverse osmosis FT-30 aromatic polyamide membrane. J Membr Sci 2011;384(1–2):1–9. 链接1

[12] Ding MX, Szymczyk A, Ghoufi A. Hydration of a polyamide reverse-osmosis membrane. J Membr Sci 2016;501:248–53. 链接1

[13] Gao WM, She FH, Zhang J, Dumée LF, He L, Hodgson PD, et al. Understanding water and ion transport behaviour and permeability through poly(amide) thin film composite membrane. J Membr Sci 2015;487:32–9. 链接1

[14] Shen M, Keten S, Lueptow RM. Dynamics of water and solute transport in polymeric reverse osmosis membranes via molecular dynamics simulations. J Membr Sci 2016;506:95–108. 链接1

[15] Bocquet L, Charlaix E. Nanofluidics, from bulk to interfaces. Chem Soc Rev 2010;39(3):1073–95. 链接1

[16] Zhao Y, Zhang Z, Dai L, Mao H, Zhang S. Enhanced both water flux and salt rejection of reverse osmosis membrane through combining isophthaloyl dichloride with biphenyl tetraacyl chloride as organic phase monomer for seawater desalination. J Membr Sci 2017;522:175–82. 链接1

[17] Song Y, Xu F, Wei M, Wang Y. Water flow inside polamide reverse osmosis membranes: a non-equilibrium molecular dynamics study. J Phys Chem B 2017;121(7):1715–22. 链接1

[18] Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 1995;117(1):1–19. 链接1

[19] Sun H, Mumby SJ, Maple JR, Hagler AT. An ab initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc 1994;116(7):2978–87. 链接1

[20] Sun H. Ab initio calculations and force field development for computer simulation of polysilanes. Macromolecules 1995;28(3):701–12. 链接1

[21] Maple JR, Hwang MJ, Stockfisch TP, Dinur U, Waldman M, Ewig CS, et al. Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules. J Comput Chem 1994;15 (2):162–82. 链接1

[22] Zhang X, Cahill DG, Coronell O, Mariñas BJ. Absorption of water in the active layer of reverse osmosis membranes. J Membr Sci 2009;331(1–2):143–51. 链接1

[23] Harder E, Walters DE, Bodnar YD, Faibish RS, Roux B. Molecular dynamics study of a polymeric reverse osmosis membrane. J Phys Chem B 2009;113 (30):10177–82. 链接1

[24] Cohen-Tanugi D, Grossman JC. Water desalination across nanoporous graphene. Nano Lett 2012;12(7):3602–8. 链接1

[25] Kalra A, Garde S, Hummer G. Osmotic water transport through carbon nanotube membranes. Proc Natl Acad Sci USA 2003;100(18):10175–80. 链接1

[26] Wang L, Dumont RS, Dickson JM. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure. J Chem Phys 2012;137(4):044102. 链接1

[27] Richard R, Anthony S, Aziz G. Pressure-driven molecular dynamics simulations of water transport through a hydrophilic nanochannel. Mol Phys 2016;114 (18):2655–63. 链接1

[28] Xu F, Song Y, Wei MJ, Wang Y. Water flow through interlayer channels of twodimensional materials with various hydrophilicities. J Phys Chem C 2018;122 (27):15772–9. 链接1

[29] Ritos K, Mattia D, Calabrò F, Reese JM. Flow enhancement in nanotubes of different materials and lengths. J Chem Phys 2014;140(1):014702. 链接1

[30] Borg MK, Lockerby DA, Reese JM. A hybrid molecular-continuum simulation method for incompressible flows in micro/nanofluidic networks. Microfluid Nanofluid 2013;15(4):541–57. 链接1

[31] Ding M, Szymczyk A, Ghoufi A. On the structure and rejection of ions by a polyamide membrane in pressure-driven molecular dynamics simulations. Desalination 2015;368:76–80. 链接1

[32] Liu B, Wu RB, Baimova JA, Wu H, Law AWK, Dmitriev SV, et al. Molecular dynamics study of pressure-driven water transport through graphene bilayers. Phys Chem Chem Phys 2016;18(3):1886–96. 链接1

[33] Wei T, Zhang L, Zhao H, Ma H, Sajib MS, Jiang H, et al. Aromatic polyamide reverse-osmosis membrane: an atomistic molecular dynamics simulation. J Phys Chem B 2016;120(39):10311–8. 链接1

[34] Sarkisov L, Harrison A. Computational structure characterisation tools in application to ordered and disordered porous materials. Mol Simul 2011;37 (15):1248–57. 链接1

[35] Singh PS, Ray P, Xie Z, Hoang M. Synchrotron SAXS to probe cross-linked network of polyamide ‘reverse osmosis’ and ‘nanofiltration’ membranes. J Membr Sci 2012;421–422:51–9. 链接1

[36] Yoon Y, Lueptow RM. Removal of organic contaminants by RO and NF membranes. J Membr Sci 2005;261(1–2):76–86. 链接1

[37] Murad S, Nitsche LC. The effect of thickness, pore size and structure of a nanomembrane on the flux and selectivity in reverse osmosis separations: a molecular dynamics study. Chem Phys Lett 2004;397(1–3):211–5. 链接1

[38] Kou J, Zhou X, Lu H, Wu F, Fan J. Graphyne as the membrane for water desalination. Nanoscale 2014;6(3):1865–70. 链接1

[39] Nicholls WD, Borg MK, Lockerby DA, Reese JM. Water transport through (7,7) carbon nanotubes of different lengths using molecular dynamics. Microfluid Nanofluid 2012;12(1–4):257–64. 链接1

[40] Ghosh AK, Jeong BH, Huang XF, Hoek EMV. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. J Membr Sci 2008;311(1–2):34–45. 链接1

[41] Geise GM, Park HB, Sagle AC, Freeman BD, McGrath JE. Water permeability and water/salt selectivity tradeoff in polymers for desalination. J Membr Sci 2011;369(1–2):130–8. 链接1

[42] Bruening ML, Dotzauer DM, Jain P, Ouyang L, Baker GL. Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir 2008;24(15):7663–73. 链接1

相关研究