期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第11期 doi: 10.1016/j.eng.2020.04.017

纳米技术和纳米医学——肺癌诊断和治疗的希望之路

a Key Laboratory of Oral Biomedical Engineering (Wuhan University), Ministry of Education, Hospital of Stomatology, School of Stomatology, Wuhan University, Wuhan 430079, China
b Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH 03756, USA
c Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
d Tus-Medical Health Technology Investment (Jiaxing) Co., Ltd., Jiaxing 314033, China
e Minimally Invasive Thoracic Surgery Unit (UCTMI), Hospital San Rafael, Coruña 15006, Spain
f Osaka Toneyama Medical Center, Osaka 560-8552, Japan
g Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS, National Center for Nanoscience and Technology, Beijing 100190, China

收稿日期: 2019-12-14 修回日期: 2020-04-01 录用日期: 2020-04-24 发布日期: 2021-10-07

下一篇 上一篇

摘要

肺癌是全球最常见的癌症,五年总生存率非常低。肺癌的常规诊断和治疗策略具有内在局限性,这就推动了纳米技术和纳米医学方法的发展,以提高早期诊断率并开发更有效、更安全的肺癌治疗方案。癌症纳米医学旨在根据每个患者独特的生理和病理特征(在基因组和蛋白质组水平上)来制定药物递送、诊断和治疗方案,在该领域引起广泛关注。尽管纳米医学技术在肺癌的科学研究中获得成功应用,但由于对纳米技术与生物学之间的相互作用知之甚少,以及毒理学、药理学、免疫学和纳米颗粒的大规模制造等方面的挑战,使得纳米医学方法的临床转化仍然具有挑战性。在本文中,我们强调了用于肺癌治疗的纳米医学的发展和机遇,并展望了该领域的前景,以及讨论了其在临床转化中面临的挑战。

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69 (1):7–34. 链接1

[ 2 ] Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin 2016;66(2):115–32. 链接1

[ 3 ] Sun IC, Ahn CH, Kim K, Emelianov S. Photoacoustic imaging of cancer cells with glycol–chitosan-coated gold nanoparticles as contrast agents. J Biomed Opt 2019;24(12):1–5. 链接1

[ 4 ] Garcia VB, de Carvalho TG, da Silva Gasparotto LH, da Silva HFO, de Araújo AA, Guerra GCB, et al. Environmentally compatible bioconjugated gold nanoparticles as efficient contrast agents for inflammation-induced cancer imaging. Nanoscale Res Lett 2019;14(1):166. 链接1

[ 5 ] Tang CK, Vaze A, Shen M, Rusling JF. High-throughput electrochemical microfluidic immunoarray for multiplexed detection of cancer biomarker proteins. ACS Sens 2016;1(8):1036–43. 链接1

[ 6 ] Munge BS, Stracensky T, Gamez K, DiBiase D, Rusling JF. Multiplex immunosensor arrays for electrochemical detection of cancer biomarker proteins. Electroanalysis 2016;28(11):2644–58. 链接1

[ 7 ] Cheng Z, Yan X, Sun X, Shen B, Gambhir SS. Tumor molecular imaging with nanoparticles. Engineering 2016;2(1):132–40. 链接1

[ 8 ] Hood RL, Andriani RT, Ecker TE, Robertson JL, Rylander CG. Characterizing thermal augmentation of convection-enhanced drug delivery with the fiberoptic microneedle device. Engineering 2015;1(3):344–50. 链接1

[ 9 ] Tang T, Azuma T, Iwahashi T, Takeuchi H, Kobayashi E, Sakuma I. A highprecision US-guided robot-assisted HIFU treatment system for breast cancer. Engineering 2018;4(5):702–13. 链接1

[10] Hu G, Guan K, Lu L, Zhang J, Lu N, Guan Y. Engineered functional surfaces by laser microprocessing for biomedical applications. Engineering 2018;4 (6):822–30. 链接1

[11] He W. Cell therapy: pharmacological intervention enters a third era. Engineering 2019;5(1):5–9. 链接1

[12] Tonelli MR, Shirts BH. Knowledge for precision medicine: mechanistic reasoning and methodological pluralism. JAMA 2017;318(17):1649–50. 链接1

[13] Badrzadeh F, Rahmati-Yamchi M, Badrzadeh K, Valizadeh A, Zarghami N, Farkhani SM, et al. Drug delivery and nanodetection in lung cancer. Artif Cells Nanomed Biotechnol 2016;44(2):618–34. 链接1

[14] Wang Z, Qiao R, Tang N, Lu Z, Wang H, Zhang Z, et al. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonanceguided focused ultrasound ablation of lung cancer. Biomaterials 2017;127:25–35. 链接1

[15] Ghasemi Y, Peymani P, Afifi S. Quantum dot: magic nanoparticle for imaging, detection and targeting. Acta Biomed 2009;80(2):156–65. 链接1

[16] Papagiannaros A, Upponi J, Hartner W, Mongayt D, Levchenko T, Torchilin V. Quantum dot loaded immunomicelles for tumor imaging. BMC Med Imaging 2010;10(1):22. 链接1

[17] Jin Y, Jia C, Huang SW, O’Donnell M, Gao X. Multifunctional nanoparticles as coupled contrast agents. Nat Commun 2010;1(1):41. 链接1

[18] Xiao L, Tian X, Harihar S, Li Q, Li L, Welch DR, et al. Gd2O3-doped silica @ Au nanoparticles for in vitro imaging cancer biomarkers using surface-enhanced Raman scattering. Spectrochim Acta A 2017;181:218–25. 链接1

[19] Neoh KH, Hassan AA, Chen A, Sun Y, Liu P, Xu KF, et al. Rethinking liquid biopsy: microfluidic assays for mobile tumor cells in human body fluids. Biomaterials 2018;150:112–24. 链接1

[20] Ooki A, Maleki Z, Tsay JC, Goparaju C, Brait M, Turaga N, et al. A panel of novel detection and prognostic methylated DNA markers in primary non-small cell lung cancer and serum DNA. Clin Cancer Res 2017;23(22):7141–52. 链接1

[21] Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, et al.; Cancer Genome Atlas Research Network. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet 2016;48(6):607–16. 链接1

[22] Mandel P, Métais P. Les acides nucléiques du plasma sanguin chez l’Homme. CR Seances Soc Biol Fil 1948;142(3–4):241–3. French.

[23] Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001;61 (4):1659–65. 链接1

[24] Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977;37(3):646–50. 链接1

[25] Chaudhuri AA, Chabon JJ, Lovejoy AF, Newman AM, Stehr H, Azad TD, et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov 2017;7(12):1394–403. 链接1

[26] Liang Z, Cheng Y, Chen Y, Hu Y, Liu WP, Lu Y, et al. EGFR T790M ctDNA testing platforms and their role as companion diagnostics: correlation with clinical outcomes to EGFR-TKIs. Cancer Lett 2017;403:186–94. 链接1

[27] Nguyen AH, Sim SJ. Nanoplasmonic biosensor: detection and amplification of dual bio-signatures of circulating tumor DNA. Biosens Bioelectron 2015;67:443–9. 链接1

[28] Dianat S, Bordbar AK, Tangestaninejad S, Yadollahi B, Amiri R, ZarkeshEsfahani SH, et al. In vitro antitumor activity of free and nano-encapsulated Na5[PMo10V2O40]nH2O and its binding properties with ctDNA by using combined spectroscopic methods. J Inorg Biochem 2015;152:74–81. 链接1

[29] Makarovskiy AN, Ackerley W, Wojcik L, Halpert GK, Stein BS, Carreiro MP, et al. Application of immunomagnetic beads in combination with RT-PCR for the detection of circulating prostate cancer cells. J Clin Lab Anal 1997;11 (6):346–50. 链接1

[30] Simitzi C, Efstathopoulos P, Kourgiantaki A, Ranella A, Charalampopoulos I, Fotakis C, et al. Laser fabricated discontinuous anisotropic microconical substrates as a new model scaffold to control the directionality of neuronal network outgrowth. Biomaterials 2015;67:115–28. 链接1

[31] Sonnenberg A, Marciniak JY, McCanna J, Krishnan R, Rassenti L, Kipps TJ, et al. Dielectrophoretic isolation and detection of cfc-DNA nanoparticulate biomarkers and virus from blood. Electrophoresis 2013;34(7):1076–84. 链接1

[32] Jeon SH, Hong WY, Lee ES, Cho Y. High-purity isolation and recovery of circulating tumor cells using conducting polymer-deposited microfluidic device. Theranostics 2014;4(11):1123–32. 链接1

[33] Jeon SH, Lee HJ, Bae K, Yoon KA, Lee ES, Cho Y. Efficient capture and isolation of tumor-related circulating cell-free DNA from cancer patients using electroactive conducting polymer nanowire platforms. Theranostics 2016;6 (6):828–36. 链接1

[34] Bernabé R, Hickson N, Wallace A, Blackhall FH. What do we need to make circulating tumour DNA (ctDNA) a routine diagnostic test in lung cancer? Eur J Cancer 2017;81:66–73. 链接1

[35] Xu T, Kang X, You X, Dai L, Tian D, Yan W, et al. Cross-platform comparison of four leading technologies for detecting EGFR mutations in circulating tumor DNA from non-small cell lung carcinoma patient plasma. Theranostics 2017;7 (6):1437–46. 链接1

[36] Zhao L, Tang C, Xu L, Zhang Z, Li X, Hu H, et al. Enhanced and differential capture of circulating tumor cells from lung cancer patients by microfluidic assays using aptamer cocktail. Small 2016;12(8):1072–81. 链接1

[37] Zhou B, Nie J, Yang W, Huang C, Huang Y, Zhao H. Effect of hydrothorax EGFR gene mutation and EGFR-TKI targeted therapy on advanced non-small cell lung cancer patients. Oncol Lett 2016;11(2):1413–7. 链接1

[38] Roscilli G, De Vitis C, Ferrara FF, Noto A, Cherubini E, Ricci A, et al. Human lung adenocarcinoma cell cultures derived from malignant pleural effusions as model system to predict patients chemosensitivity. J Transl Med 2016;14 (1):61. 链接1

[39] Vallée A, Marcq M, Bizieux A, Kouri CE, Lacroix H, Bennouna J, et al. Plasma is a better source of tumor-derived circulating cell-free DNA than serum for the detection of EGFR alterations in lung tumor patients. Lung Cancer 2013;82 (2):373–4. 链接1

[40] Latifi Z, Fattahi A, Ranjbaran A, Nejabati HR, Imakawa K. Potential roles of metalloproteinases of endometrium–derived exosomes in embryo–maternal crosstalk during implantation. J Cell Physiol 2018;233(6):4530–45. 链接1

[41] Yang MQ, Du Q, Varley PR, Goswami J, Liang Z, Wang R, et al. Interferon regulatory factor 1 priming of tumour-derived exosomes enhances the antitumour immune response. Br J Cancer 2018;118(1):62–71. 链接1

[42] Sansone P, Savini C, Kurelac I, Chang Q, Amato LB, Strillacci A, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci USA 2017;114(43):E9066–75. Corrected in: Proc Natl Acad Sci USA 2017;114 (47):E10255.

[43] Son KJ, Rahimian A, Shin DS, Siltanen C, Patel T, Revzin A. Microfluidic compartments with sensing microbeads for dynamic monitoring of cytokine and exosome release from single cells. Analyst 2016;141 (2):679–88. 链接1

[44] He M, Crow J, Roth M, Zeng Y, Godwin AK. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip 2014;14(19):3773–80. 链接1

[45] Mansur N, Raziul Hasan M, Kim YT, Iqbal SM. Functionalization of nanotextured substrates for enhanced identification of metastatic breast cancer cells. Nanotechnology 2017;28(38):385101. 链接1

[46] Wan Y, Cheng G, Liu X, Hao SJ, Nisic M, Zhu CD, et al. Rapid magnetic isolation of extracellular vesicles via lipid-based nanoprobes. Nat Biomed Eng 2017; 1(4):0058. 链接1

[47] Zhang P, He M, Zeng Y. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip 2016;16(16):3033–42. 链接1

[48] In GK, Nieva J. Emerging chemotherapy agents in lung cancer: nanoparticle therapeutics for non-small cell lung cancer. Transl Cancer Res 2015;4 (4):340–55. 链接1

[49] Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ. Nanomaterials in combating cancer: therapeutic applications and developments. NanomedNanotechnol 2014;10(1):19–34. 链接1

[50] Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 2015;200:138–57. 链接1

[51] Kumar D, Mutreja I, Chitcholtan K, Sykes P. Cytotoxicity and cellular uptake of different sized gold nanoparticles in ovarian cancer cells. Nanotechnology 2017;28(47):475101. 链接1

[52] Chen YH, Tsai CY, Huang PY, Chang MY, Cheng PC, Chou CH, et al. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharmaceut 2007;4(5):713–22. 链接1

[53] Yokoyama T, Tam J, Kuroda S, Scott AW, Aaron J, Larson T, et al. EGFR-targeted hybrid plasmonic magnetic nanoparticles synergistically induce autophagy and apoptosis in non-small cell lung cancer cells. PLoS ONE 2011;6(11): e25507. 链接1

[54] Kao HW, Lin YY, Chen CC, Chi KH, Tien DC, Hsia CC, et al. Evaluation of EGFRtargeted radioimmuno-gold-nanoparticles as a theranostic agent in a tumor animal model. Bioorg Med Chem Lett 2013;23(11):3180–5. 链接1

[55] Bernardes VHF, Qu Y, Du Z, Beaton J, Vargas MD, Farrell NP. Interaction of the HIV NCp7 protein with platinum(II) and gold(III) complexes containing tridentate ligands. Inorg Chem 2016;55(21):11396–407. 链接1

[56] Li Q, Wang Q, Yang X, Wang K, Zhang H, Nie W. High sensitivity surface plasmon resonance biosensor for detection of microRNA and small molecule based on graphene oxide–gold nanoparticles composites. Talanta 2017;174:521–6. 链接1

[57] Knezˇevic´ NZˇ, Durand JO. Targeted treatment of cancer with nanotherapeutics based on mesoporous silica nanoparticles. ChemPlusChem 2015;80 (1):26–36. 链接1

[58] Bardhan M, Majumdar A, Jana S, Ghosh T, Pal U, Swarnakar S, et al. Mesoporous silica for drug delivery: interactions with model fluorescent lipid vesicles and live cells. J Photochem Photobiol B 2018;178:19–26. 链接1

[59] Zhang Z, Wang L, Wang J, Jiang X, Li X, Hu Z, et al. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 2012;24(11):1418–23. 链接1

[60] Liu J, Luo Z, Zhang J, Luo T, Zhou J, Zhao X, et al. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials 2016;83:51–65. 链接1

[61] Liu D, Kramer SA, Huxford-Phillips RC, Wang S, Della Rocca J, Lin W. Coercing bisphosphonates to kill cancer cells with nanoscale coordination polymers. Chem Commun 2012;48(21):2668–70. 链接1

[62] Liu D, Poon C, Lu K, He C, Lin W. Self-assembled nanoscale coordination polymers with trigger release properties for effective anticancer therapy. Nat Commun 2014;5(1):4182. 链接1

[63] Au KM, Satterlee A, Min Y, Tian X, Kim YS, Caster JM, et al. Folate-targeted pHresponsive calcium zoledronate nanoscale metal–organic frameworks: turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials 2016;82:178–93. 链接1

[64] Muthu MS, Mei L, Feng SS. Nanotheranostics: advanced nanomedicine for the integration of diagnosis and therapy. Nanomedicine 2014;9(9):1277–80. 链接1

[65] Mura S, Couvreur P. Nanotheranostics for personalized medicine. Adv Drug Deliv Rev 2012;64(13):1394–416. 链接1

[66] Cheng FY, Su CH, Wu PC, Yeh CS. Multifunctional polymeric nanoparticles for combined chemotherapeutic and near-infrared photothermal cancer therapy in vitro and in vivo. Chem Commun 2010;46(18):3167–9. 链接1

[67] Jing L, Shi J, Fan D, Li Y, Liu R, Dai Z, et al. 177Lu-labeled cerasomes encapsulating indocyanine green for cancer theranostics. ACS Appl Mater Interfaces 2015;7(39):22095–105. 链接1

[68] Zhang L, Li J, Liu K. Recent advances in gadolinium-based MRI metal responsive agent. Sci China Technol Sci 2018;61(9):1329–33. 链接1

[69] Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med 2016;1(1):10–29. 链接1

[70] Knights OB, McLaughlan JR. Gold nanorods for light-based lung cancer theranostics. Int J Mol Sci 2018;19(11):3318. 链接1

[71] He Y, Du Z, Ma S, Liu Y, Li D, Huang H, et al. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int J Nanomed 2016;11:1879–87.

[72] Svechkarev D, Mohs AM. Organic fluorescent dye-based nanomaterials: advances in the rational design for imaging and sensing applications. Curr Med Chem 2019;26(21):4042–64. 链接1

[73] Le Duc G, Roux S, Paruta-Tuarez A, Dufort S, Brauer E, Marais A, et al. Advantages of gadolinium based ultrasmall nanoparticles vs molecular gadolinium chelates for radiotherapy guided by MRI for glioma treatment. Cancer Nanotechnol 2014;5(1):4. 链接1

[74] Ivashchenko O, Peplin´ ska B, Gapin´ ski J, Flak D, Jarek M, Załe˛ski K, et al. Silver and ultrasmall iron oxides nanoparticles in hydrocolloids: effect of magnetic field and temperature on self-organization. Sci Rep 2018;8(1):4041. 链接1

[75] Nguyen H, Tinet E, Chauveau T, Geinguenaud F, Lalatonne Y, Michel A, et al. Bimodal fucoidan-coated zinc oxide/iron oxide-based nanoparticles for the imaging of atherothrombosis. Molecules 2019;24(5):962. 链接1

[76] Gonzalez-Rivas D, Yang Y, Ng C. Advances in uniportal video-assisted thoracoscopic surgery: pushing the envelope. Thorac Surg Clin 2016;26 (2):187–201. 链接1

[77] Ban I, Markuš S, Gyergyek S, Drofenik M, Korenak J, Helix-Nielsen C, et al. Synthesis of poly-sodium-acrylate (PSA)-coated magnetic nanoparticles for use in forward osmosis draw solutions. Nanomaterials 2019;9(9):1238. 链接1

[78] Edelman R, Assaraf YG, Slavkin A, Dolev T, Shahar T, Livney YD. Developing body-components-based theranostic nanoparticles for targeting ovarian cancer. Pharmaceutics 2019;11(5):216. 链接1

[79] Ahlawat J, Henriquez G, Narayan M. Enhancing the delivery of chemotherapeutics: role of biodegradable polymeric nanoparticles. Molecules 2018;23(9):2157. 链接1

[80] Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomed 2018;13:3921–35. 链接1

[81] Zylberberg C, Gaskill K, Pasley S, Matosevic S. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther 2017;24(8):441–52. 链接1

[82] Mayer LD, Tardi P, Louie AC. CPX-351: a nanoscale liposomal co-formulation of daunorubicin and cytarabine with unique biodistribution and tumor cell uptake properties. Int J Nanomed 2019;14:3819–30. 链接1

[83] Caracciolo G, Palchetti S, Digiacomo L, Chiozzi RZ, Capriotti AL, Amenitsch H, et al. Human biomolecular corona of liposomal doxorubicin: the overlooked factor in anticancer drug delivery. ACS Appl Mater Interfaces 2018;10 (27):22951–62. 链接1

[84] Fathi S, Oyelere AK. Liposomal drug delivery systems for targeted cancer therapy: is active targeting the best choice? Future Med Chem 2016;8 (17):2091–112. 链接1

[85] Hwang H, Jeong HS, Oh PS, Kim M, Lee TK, Kwon J, et al. PEGylated nanoliposomes encapsulating angiogenic peptides improve perfusion defects: radionuclide imaging-based study. Nucl Med Biol 2016;43(9):552–8. 链接1

[86] Wagner U, Marth C, Largillier R, Kaern J, Brown C, Heywood M, et al. Final overall survival results of phase III GCIG CALYPSO trial of pegylated liposomal doxorubicin and carboplatin vs paclitaxel and carboplatin in platinumsensitive ovarian cancer patients. Br J Cancer 2012;107(4):588–91. 链接1

[87] Nehate C, Jain S, Saneja A, Khare V, Alam N, Dubey RD, et al. Paclitaxel formulations: challenges and novel delivery options. Curr Drug Deliv 2014;11 (6):666–86. 链接1

[88] Pujade-Lauraine E, Hilpert F, Weber B, Reuss A, Poveda A, Kristensen G, et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. J Clin Oncol 2014;32(13):1302–8. 链接1

[89] Rajendrakumar SK, Uthaman S, Cho CS, Park IK. Nanoparticle-based phototriggered cancer immunotherapy and its domino effect in the tumor microenvironment. Biomacromolecules 2018;19(6):1869–87. 链接1

[90] Dougan M, Dougan SK. Targeting immunotherapy to the tumor microenvironment. J Cell Biochem 2017;118(10):3049–54. 链接1

[91] Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 2019;18(3):175–96. 链接1

[92] Cisterna BA, Kamaly N, Choi WI, Tavakkoli A, Farokhzad OC, Vilos C. Targeted nanoparticles for colorectal cancer. Nanomedicine 2016;11(18):2443–56. 链接1

[93] Geiger BC, Wang S, Padera RF, Grodzinsky AJ, Hammond PT. Cartilagepenetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Sci Transl Med 2018;10(469):eaat8800. 链接1

[94] Battogtokh G, Ko YT. Mitochondrial-targeted photosensitizer-loaded folate– albumin nanoparticle for photodynamic therapy of cancer. Nanomedicine 2017;13(2):733–43. 链接1

[95] Sivasubramanian M, Chuang YC, Lo LW. Evolution of nanoparticle-mediated photodynamic therapy: from superficial to deep-seated cancers. Molecules 2019;24(3):520. 链接1

[96] Ghalandari B, Asadollahi K, Shakerizadeh A, Komeili A, Riazi G, Kamrava SK, et al. Microtubule network as a potential candidate for targeting by gold nanoparticleassisted photothermal therapy. J Photochem Photobiol B 2019;192:131–40. 链接1

[97] Sweeney EE, Cano-Mejia J, Fernandes R. Photothermal therapy generates a thermal window of immunogenic cell death in neuroblastoma. Small 2018;14 (20):1800678. 链接1

[98] Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A. Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol 2016;44(1):410–22. 链接1

[99] Kruger CA, Abrahamse H. Utilisation of targeted nanoparticle photosensitiser drug delivery systems for the enhancement of photodynamic therapy. Molecules 2018;23(10):2628. 链接1

[100] Kim T, Zhang Q, Li J, Zhang L, Jokerst JV. A gold/silver hybrid nanoparticle for treatment and photoacoustic imaging of bacterial infection. ACS Nano 2018;12(6):5615–25. 链接1

[101] Donnelly EM, Kubelick KP, Dumani DS, Emelianov SY. Photoacoustic imageguided delivery of plasmonic-nanoparticle-labeled mesenchymal stem cells to the spinal cord. Nano Lett 2018;18(10):6625–32. 链接1

相关研究