期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第2期 doi: 10.1016/j.eng.2020.05.022

面向城市河流生态流量保障的堰高确定方法

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China

收稿日期: 2020-03-09 修回日期: 2020-05-08 录用日期: 2020-05-28 发布日期: 2020-09-29

下一篇 上一篇

摘要

城市河流生态流量不足的现象普遍存在。除各用水部门之间竞争加剧以及生态流量保障措施执行不彻底等已知原因外,堰高设计中未明确考虑生态流量,是导致生态流量无法满足的另一个重要原因。本研究建议将生态流量的保障措施从供水阶段扩展到河道的设计阶段。为了更有效地满足城市河流的生态流量,本文构建了一个新的堰高确定框架。有别于传统框架中堰高设计重点关注防洪和蓄水要求,并以洪水入流作为设计依据,新的框架中增加了对生态流量以及河流流速维持的考虑,将城市河流中能为生态流量保障提供的实际流量作为入流。本研究以典型的城市渠化河流——合肥市十五里河为案例,对新框架的有效性进行实证研究。研究结果表明,旧框架会导致设计的堰高过高,无法有效满足生态流量保障的要求,而新框架可确定更为合理的堰高,从而改善了生态流量的保障效果。

图片

图1

图2

参考文献

[ 1 ] Morley SA, Karr JR. Assessing and restoring the health of urban streams in the Puget Sound Basin. Conserv Biol 2002;16(6):1498–509. 链接1

[ 2 ] Chin A. Urban transformation of river landscapes in a global context. Geomorphology 2006;79(3–4):460–87. 链接1

[ 3 ] Toth LA, Melvin SM, Arrington DA, Chamberlain J. Hydrologic manipulations of the channelized Kissimmee River. Bioscience 1998;48(9):757–64. 链接1

[ 4 ] Petts GE, Sparks R, Campbell I. River restoration in developing countries. In: Boon PJ, Davies BR, Pelts GE, editors. Global perspectives on river conservation. Chichester: John Wiley; 2000. p. 493–508. 链接1

[ 5 ] Walsh CJ, Fletcher TD, Ladson AR. Stream restoration in urban catchments through redesigning stormwater systems: looking to the catchment to save the stream. J N Am Benthol Soc 2005;24(3):690–705. 链接1

[ 6 ] Richter BD, Baumgartner JV, Wigington R, Braun DP. How much water does a river need? Freshw Biol 1997;37(1):231–49. 链接1

[ 7 ] Horne A, Szemis AM, Kaur S, Webb JA, Stewardson MJ, Costa A, et al. Optimization tools for environmental water decisions: a review of strengths, weaknesses, and opportunities to improve adoption. Environ Model Softw 2016;84:326–38. 链接1

[ 8 ] Wang C, Wang PF. Management and construction of urban water system. Beijing: Science Press; 2004. Chinese.

[ 9 ] Tharme RE. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Res Appl 2003;19(5–6):397–441. 链接1

[10] Chang FJ, Tsai YH, Chen PA, Coynel A, Vachaud G. Modeling water quality in an urban river using hydrological factors—data driven approaches. J Environ Manage 2015;151:87–96. 链接1

[11] Willis AD, Campbell AM, Fowler AC, Babcock CA, Howard JK, Deas ML, et al. Instream flows: new tools to quantify water quality conditions for returning adult chinook salmon. J Water Resour Plan Manage 2016;142(2):04015056. 链接1

[12] Jia H, Ma H, Wei M. Calculation of the minimum ecological water requirement of an urban river system and its deployment: a case study in Beijing central region. Ecol Modell 2011;222(17):3271–6. 链接1

[13] Safavi HR, Golmohammadi MH, Sandoval-Solis S. Scenario analysis for integrated water resources planning and management under uncertainty in the Zayandehrud river basin. J Hydrol 2016;539:625–39. 链接1

[14] Pauls MA, Wurbs RA. Environmental flow attainment metrics for water allocation modeling. J Water Resour Plan Manage 2016;142(8):04016018.1–9.

[15] Petts GE. Instream flow science for sustainable river management. J Am Water Resour Assoc 2009;45(5):1071–86. 链接1

[16] Brewer SK, McManamay RA, Miller AD, Mollenhauer R, Worthington TA, Arsuffi T. Advancing environmental flow science: developing frameworks for altered landscapes and integrating efforts across disciplines. Environ Manage 2016;58(2):175–92. 链接1

[17] Morrison RR, Stone MC. Spatially implemented Bayesian network model to assess environmental impacts of water management. Water Resour Res 2014;50(50):8107–24. 链接1

[18] Morrison RR, Stone MC. Evaluating the impacts of environmental flow alternatives on reservoir and recreational operation using system dynamics modeling. J Am Water Resour Assoc 2015;51(1):33–46. 链接1

[19] Lorenz S, Szemisa JM, Kaura S, Webb JA, Stewardson MJ, Costa A, et al. Fuzzy cognitive mapping for predicting hydromorphological responses to multiple pressures in rivers. J Appl Ecol 2016;53(2):559–66. 链接1

[20] Yin X, Yang Z, Petts GE. Reservoir operating rules to sustain environmental flows in regulated rivers. Water Resour Res 2011;47(8):427–38. 链接1

[21] Yin X, Yang Z, Petts GE. Optimizing environmental flows below dams. River Res Appl 2012;28(6):703–16. 链接1

[22] Yin X, Yang Z, Petts GE, Kondolf GM. A reservoir operating method for riverine ecosystem protection, reservoir sedimentation control and water supply. J Hydrol 2014;512(6):379–87. 链接1

[23] Yin X, Yang Z, Yang W, Zhao Y, Chen H. Optimized reservoir operation to balance human and riverine ecosystem needs: model development, and a case study for the Tanghe reservoir, Tang river basin. China. Hydrol Processes 2010;24(4):461–71. 链接1

[24] Tofiq FA, Guven A. Semi-theoretical approach to optimisation of gate ratio for small concrete dams and weirs. Eur J Environ Civ Eng 2016;20(3):251–62. 链接1

[25] Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Natl Acad Sci USA 2008;105(32):11254–8. 链接1

[26] Chanson H. Hydraulics of open channel flow. 2nd ed. Oxford: ButterworthHeinemann Press; 2004. 链接1

[27] Zhao Z, He J. Hydraulics. 2nd ed. Beijing: Tsinghua Press; 2010. Chinese. 链接1

[28] Piccinini M, Caro AS, Gultemiriam ML, Giorgi A. Estimating the selfdepuration capacity of a reach of the Luján River. Int J Environ Res 2015;9 (3):1037–46. 链接1

[29] Lian J, Yao Y, Ma C, Guo Q. Reservoir operation rules for controlling algal blooms in a tributary to the impoundment of Three Gorges Dam. Water 2014;6 (10):3200–23. 链接1

[30] Eder BL, Steffensen KD, Haas JD, Adams JD. Short-term survival and dispersal of hatchery-reared juvenile pallid sturgeon stocked in the channelized Missouri River. J Appl Ichthyology 2015;31(6):991–6. 链接1

[31] Goeller B, Wolter C. Performance of bottom ramps to mitigate gravel habitat bottlenecks in a channelized lowland river. Restor Ecol 2015;23(5):595–606. 链接1

[32] Hogberg NP, Hamel MJ, Pegg MA. Age-0 channel catfish Ictalurus punctatus growth related to environmental conditions in the channelized Missouri River, Nebraska. River Res Appl 2016;32(4):744–52. 链接1

[33] Niazkar M, Afzali SH. Optimum design of lined channel sections. Water Resour Manage 2015;29(6):1921–32. 链接1

[34] Yang W, Sun D, Yang Z. A simulation framework for water allocation to meet the environmental requirements of urban rivers: model development and a case study for the Liming River in Daqing City, China. Environ Fluid Mech 2008;8(4):333–47. 链接1

[35] Sun D, Yang W. Genetic algorithm solution of grey nonlinear water environment management models developed for the Liming River in Daqing, China. J Environ Eng 2007;133(3):287–93. 链接1

[36] Escartın J, Aubrey DG. Flow structure and dispersion within algal mats. Estuar Coast Shelf Sci 1995;40(4):451–72. 链接1

[37] Mitrovic SM, Oliver RL, Rees C, Bowling LC, Buckney RT. Critical flow velocities for the growth and dominance of Anabaena circinalis in some turbid freshwater rivers. Freshw Biol 2003;48(1):164–74. 链接1

[38] Liu F, Jin F. Control effect of current velocity on alga growth in eutrophication water. Water Sav Irrig 2009;9:52–4. Chinese.

[39] Dong K. Research on the impact of flow velocity on eutrophication in channel reservoir—study the growth of algae [dissertation]. Chongqing: Chongqing University; 2010. Chinese.

[40] Ministry of Ecology and Environment of People’s Republic of China; State Administration for Market Regulation. GB 3838-2002: Environmental quality standard for surface water. Chinese standard. Beijing: China Environment Publishing Group; 2002. Chinese.

[41] Zhang L, Yuan B, Yin X, Zhao Y. The influence of channel morphological changes on environmental flow requirements in urban rivers. Water 2019;11 (9):1800. 链接1

[42] Zhang H, Chen R, Li F, Chen L. Effect of flow rate on environmental variables and phytoplankton dynamics: results from field enclosures. Chin J Oceanology Limnol 2015;33(2):430–8. 链接1

[43] Carpenter SR. Phosphorus control is critical to mitigating eutrophication. Proc Natl Acad Sci USA 2008;105(32):11039–40. 链接1

[44] Sindelar C, Schobesberger J, Habersack H. Effects of weir height and reservoir widening on sediment continuity at run-of-river hydropower plants in gravel bed rivers. Geomorphology 2017;291:106–15. 链接1

[45] Chorus I, Bartram J, editors. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. London: E&FN Spon Press; 1999. 链接1

[46] Smith VH, Schindler DW. Eutrophication science: Where do we go from here? Trends Ecol Evol 2009;24(4):201–7. 链接1

相关研究