期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第4期 doi: 10.1016/j.eng.2020.05.027

空中交通延误传播动力学的时空网络视角

School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore

收稿日期: 2020-01-09 修回日期: 2020-03-17 录用日期: 2020-05-28 发布日期: 2021-03-02

下一篇 上一篇

摘要

由于日益增长的空中交通需求与有限的空域容量之间的不平衡,空中交通出现了难以解决的延误。由于空中交通与复杂的航空运输系统有关,延误可以在这些系统中被放大和传播,从而导致所谓的延迟传播的紧急行为。对延误传播动力学的理解与现代空中交通管理有着密切的关系。本文提出了一种复杂的网络延迟传播动力学观点。具体来说,我们利用以机场为节点的时空网络对空中交通场景进行建模。为了建立节点间的动态边缘,我们提出了一种时延传播方法,并将其应用于给定的空中交通调度集合。基于所构建的时空网络,提出了三个指标(幅度、严重性和速度)来衡量延迟传播动态。为了验证该方法的有效性,我们对东南亚地区(SAR)和美国的国内航班进行了案例研究。实验表明,美国交通延误传播影响的航班数和传播延迟量的传播幅度分别是SAR的5倍和10倍。实验进一步表明,美国交通的传播速度比SAR快8倍。延迟传播动态显示,SAR约6个枢纽机场存在明显的传播延误,而美国的情况则更为严重,相应数量在16个左右。本工作为跟踪空中交通延误的演变提供了有力的工具。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Airbus. Flying by numbers: global market forecast for 2015–2034. Technical Report. Toulouse: Airbus; 2015. Report No.: 14029463.

[ 2 ] International Air Transport Association. IATA’s annual review 2019 [Internet]. Montreal: International Air Transport Association; 2019 Jun 2 [cited 2019 Sep 21]. Available from: https://www.iata.org/publications/Documents/iataannual-review-2019.pdf.

[ 3 ] Chen CH, Chou JH. Multiobjective optimization of airline crew roster recovery problems under disruption conditions. IEEE Trans Syst Man Cybern Syst 2017;47(1):133–44. 链接1

[ 4 ] Cao X, Zhu X, Tian Z, Chen J, Wu D, Du W. A knowledge-transfer-based learning framework for airspace operation complexity evaluation. Transp Res Part C Emerg Technol 2018;95:61–81. 链接1

[ 5 ] Zhou Y, Wan Y, Roy S, Taylor C, Wanke C, Ramamurthy D, et al. Multivariate probabilistic collocation method for effective uncertainty evaluation with application to air traffic flow management. IEEE Trans Syst Man Cybern Syst 2014;44(10):1347–63. 链接1

[ 6 ] Peterson EB, Neels K, Barczi N, Graham T. The economic cost of airline flight delay. J Transp Econ Policy 2013;47(1):107–21. 链接1

[ 7 ] Baumgarten P, Malina R, Lange A. The impact of hubbing concentration on flight delays within airline networks: an empirical analysis of the US domestic market. Transp Res Part E Logist Trans Rev 2014;66:103–14. 链接1

[ 8 ] Ball M, Barnhart C, Dresner M, Hansen M, Neels K, Odoni A, et al. Total delay impact study: a comprehensive assessment of the costs and impacts of flight delay in the United States. Technical Report. National Center of Excellence for Aviation Operations Research; 2010. Report No.: 01219967.

[ 9 ] Clewlow RR, Simaiakis I, Balakrishnan H. Impact of arrivals on departure taxi operations at airports. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference; 2010 Aug 2–5; Toronto, ON, Canada; 2010.

[10] Morisset T, Odoni A. Capacity, delay, and schedule reliability at major airports in Europe and the United States. Transp Res Rec 2011;2214(1):85–93. 链接1

[11] Sridhar B, Swei SSM. Relationship between weather, traffic and delay based on empirical methods. In: Proceedings of the 6th AIAA Aviation Technology, Integration and Operations Conference; 2006 Sep 25–27; Wichita, KS, USA; 2006.

[12] Lui L, Ball MO, Hansen M, Lovell DJ, Chuang C, Gulding J. Causal analysis of en route flight inefficiency—the US experience. In: Proceedings of the 12th USA/ Europe Air Traffic Management Research and Development Seminar; 2017 Jun 27–30; Seattle, WA, USA; 2017.

[13] Jones JC, Lovell DJ, Ball MO. Stochastic optimization models for transferring delay along flight trajectories to reduce fuel usage. Transp Sci 2017;52 (1):134–49. 链接1

[14] Cai K, Zhang J, Xiao M, Tang K, Du W. Simultaneous optimization of airspace congestion and flight delay in air traffic network flow management. IEEE Trans Intell Transp Syst 2017;18(11):3072–82. 链接1

[15] Delgado L, Prats X. Effect of wind on operating-cost-based cruise speed reduction for delay absorption. IEEE Trans Intell Transp Syst 2013;14 (2):918–27. 链接1

[16] Ma C, Cai Q, Alam S, Sridhar B, Duong VN. Airway network management using Braess’s paradox. Transp Res Part C Emerg Technol 2019;105:565–79. 链接1

[17] Zhang Y, Su R, Li Q, Cassandras CG, Xie L. Distributed flight routing and scheduling for air traffic flow management. IEEE Trans Intell Transp Syst 2017;18(10):2681–92. 链接1

[18] Liu Y, Hansen M. Incorporating predictability into cost optimization for ground delay programs. Transp Sci 2016;50(1):132–49. 链接1

[19] Estes A, Ball M. Data-driven planning for ground delay programs. Transp Res Rec 2017;2603(1):13–20. 链接1

[20] Ball MO, Chen CY, Hoffman R, Vossen T. Collaborative decision making in air traffic management: current and future research directions. In: Bianco L, Dell’Olmo P, Odoni AR, editors. New concepts and methods in air traffic management. Berlin: Springer; 2001. p. 17–30. 链接1

[21] Okwir S, Ulfvengren P, Angelis J, Ruiz F, Guerrero YMN. Managing turnaround performance through collaborative decision making. J Air Transp Manage 2017;58:183–96. 链接1

[22] De Almeida CRF, Li W, Meinerz GV, Li L. Satisficing game approach to collaborative decision making including airport management. IEEE Trans Intell Transp Syst 2016;17(8):2262–71. 链接1

[23] Chatterji G, Sridhar B. National airspace system delay estimation using weather weighted traffic counts. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit; 2005 Aug 15–18; San Francisco, CA, USA; 2005.

[24] Klein A, Craun C, Lee RS. Airport delay prediction using weather-impacted traffic index (WITI) model. In: Proceedings of the 29th Digital Avionics Systems Conference; 2010 Oct 3–7; Salt Lake City, UT, USA; 2010. p. 2–8.

[25] Baspinar B, Koyuncu E. A data-driven air transportation delay propagation model using epidemic process models. Int J Aerosp Eng 2016;2016: 4836260.

[26] Sternberg A, Soares J, Carvalho D, Ogasawara E. A review on flight delay prediction. 2017. arXiv:1703.06118.

[27] Rebollo JJ, Balakrishnan H. Characterization and prediction of air traffic delays. Transp Res Part C Emerg Technol 2014;44:231–41. 链接1

[28] Khanmohammadi S, Tutun S, Kucuk Y. A new multilevel input layer artificial neural network for predicting flight delays at JFK airport. Procedia Comput Sci 2016;95:237–44. 链接1

[29] Belcastro L, Marozzo F, Talia D, Trunfio P. Using scalable data mining for predicting flight delays. ACM Trans Intell Syst Technol 2016;8(1):5–14. 链接1

[30] Chen J, Li M. Chained predictions of flight delay using machine learning. In: Proceedings of the 2019 AIAA Science and Technology Forum and Exposition; 2019 Jan 7–11; San Diego, CA, USA; 2019. p. 1661.

[31] Churchill AM, Lovell DJ, Ball MO. Flight delay propagation impact on strategic air traffic flow management. Transp Res Rec 2010;2177(1):105–13. 链接1

[32] Fleurquin P, Ramasco JJ, Eguíluz VM. Characterization of delay propagation in the US air-transportation network. Transp J 2014;53(3):330–44. 链接1

[33] Ahmadbeygi S, Cohn A, Lapp M. Decreasing airline delay propagation by reallocating scheduled slack. IIE Trans 2010;42(7):478–89. 链接1

[34] Kafle N, Zou B. Modeling flight delay propagation: a new analyticaleconometric approach. Transp Res Pt B Methodol 2016;93(Pt A):520–42.

[35] Fleurquin P, Ramasco JJ, Eguiluz VM. Systemic delay propagation in the US airport network. Sci Rep 2013;3(1):1159. 链接1

[36] Pyrgiotis N, Malone KM, Odoni A. Modelling delay propagation within an airport network. Transp Res Pt C Emerg Technol 2013;27:60–75. 链接1

[37] Campanelli B, Fleurquin P, Arranz A, Etxebarria I, Ciruelos C, Eguíluz VM, et al. Comparing the modeling of delay propagation in the US and European air traffic networks. J Air Transp Manage 2016;56(Pt A):12–8.

[38] Wu W, Wu CL, Feng T, Zhang H, Qiu S. Comparative analysis on propagation effects of flight delays: a case study of China airlines. J Adv Transp 2018;2018:1–10. 链接1

[39] Beatty R, Hsu R, Berry L, Rome J. Preliminary evaluation of flight delay propagation through an airline schedule. Air Traffic Control Q 1999;7 (4):259–70. 链接1

[40] Hossain MM, Alam S, Symon F, Blom H. A complex network approach to analyze the effect of intermediate waypoints on collision risk assessment. Air Traffic Control Q 2014;22(2):87–114. 链接1

[41] Du W, Zhang M, Zhang Y, Cao X, Zhang J. Delay causality network in air transport systems. Transp Res Part E Logist Trans Rev 2018;118:466–76. 链接1

[42] Du W, Zhou X, Lordan O, Wang Z, Zhao C, Zhu Y. Analysis of the Chinese airline network as multi-layer networks. Transp Res Part E Logist Trans Rev 2016;89:108–16. 链接1

[43] Hossain MM, Alam S. A complex network approach towards modeling and analysis of the Australian airport network. J Air Transp Manage 2017;60:1–9. 链接1

[44] Rocha LE. Dynamics of air transport networks: a review from a complex systems perspective. Chin J Aeronaut 2017;30(2):469–78. 链接1

[45] Hossain M, Alam S, Abbass H. A dynamic multi-commodity flow optimization algorithm for estimating airport network capacity. In: Electronic Navigation Research Institute, editor. Air traffic management and systems II. Tokyo: Springer; 2017. p. 205–20.

[46] Campanelli B, Fleurquin P, Eguíluz VM, Ramasco JJ, Arranz A, Etxebarria I, et al. Modeling reactionary delays in the European air transport network. In: Proceedings of the Fourth SESAR Innovation Days; 2014 Nov 24–27; Madrid, Spain; 2014.

[47] Barthélemy M. Spatial networks. Phys Rep 2011;499(1–3):1–101. 链接1

[48] Holme P, Saramäki J. Temporal networks. Phys Rep 2012;519(3):97–125. 链接1

[49] Federal Aviation Administration. Definitions of variables [Internet]. Washington, DC: Federal Aviation Administration; [cited 2019 Jun 21]. Available from: https://aspmhelp.faa.gov/index.php/APM:_Analysis:_ Definitions_of_Variables. 链接1

[50] International Civil Aviation Organization. Wake turbulence category [Internet]. Montreal: International Civil Aviation Organization; [cited 2019 Apr 21]. Available from: https://www.skybrary.aero/index.php/ICAO_Wake_ Turbulence_Category. 链接1

相关研究