期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第2期 doi: 10.1016/j.eng.2020.06.013

建坝河流鱼类繁殖的流速调控

a State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
b Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
c Yangtze Institute for Conservation and Green Development, Nanjing 210029, China
d Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443000, China
e Chongqing Jiaotong University, Chongqing 400074, China
# These authors contributed equally to this work.

收稿日期: 2020-03-28 修回日期: 2020-06-23 录用日期: 2020-06-27 发布日期: 2020-07-07

下一篇 上一篇

摘要

保护濒危和重要经济鱼类以及控制入侵鱼类是全世界水利工程的巨大挑战。人们已经认识到流速会影响鱼类在河流中的产卵。但是,目前缺乏可靠的科学支持和相关机制,以综合考虑产卵、受精、孵化、存活等因素,建立流速与鱼类繁殖之间的定量关系。本研究通过实验室控制实验和野外现场实验,量化了流速与家鱼繁殖率之间的关系。结果表明,促发家鱼产卵需要一个最小的速度,并且需要一定的速度范围以维持其产卵过程。但是,实验发现随着流速的增加,家鱼的胚胎孵化和仔鱼发育会受到抑制。综合考虑产卵和孵化以及仔鱼存活需求,本文确定了河流中家鱼繁殖的优化流速过程。该发现对改进水库运行以构建合理、精确的生态流量来调控鱼类繁殖具有重要意义,并在三峡工程应用中取得了有前景的效果。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Poff NL, Schmidt JC. How dams can go with the flow. Science 2016;353 (6304):1099–100. 链接1

[ 2 ] Best J. Anthropogenic stresses on the world’s big rivers. Nat Geosci 2019;12 (1):7–21. 链接1

[ 3 ] Chen Q, Shi W, Huisman J, Stephen CM, Zhang J, Yu J, et al. Hydropower reservoirs on the upper Mekong River modify nutrient bioavailability downstream. Natl Sci Rev Forthcoming 2020. 链接1

[ 4 ] Maavara T, Chen Q, Meter KV, Lee E, Brown J, Zhang J, et al. River dam impacts on biogeochemical cycling. Nat Rev Earth Environ 2020;1:103–16. 链接1

[ 5 ] Stone R. Dam-building threatens Mekong fisheries. Science 2016;354 (6316):1084–5. 链接1

[ 6 ] Cooper AR, Infante DM, Daniel WM, Wehrly KE, Wang L, Brenden TO. Assessment of dam effects on streams and fish assemblages of the conterminous USA. Sci Total Environ 2017;586:879–89. 链接1

[ 7 ] Normando FT, Santiago KB, Gomes MVT, Rizzo E. Bazzoli N. Impact of the Três Marias dam on the reproduction of the forage fish Astyanax bimaculatus and A. fasciatus from the São Francisco River, downstream from the dam, southeastern Brazil. Environ Biol Fishes 2014;97(3):309–19. 链接1

[ 8 ] Zhang C, Ding C, Ding L, Chen L, Hu J, Tao J, et al. Large-scale cascaded dam constructions drive taxonomic and phylogenetic differentiation of fish fauna in the Lancang River, China. Rev Fish Biol Fish 2019;29(4):895–916. 链接1

[ 9 ] Cella-Ribeiro A, da Costa Doria CR, Dutka-Gianelli J, Alves H, Torrente-Vilara G. Temporal fish community responses to two cascade run-of-river dams in the Madeira River, Amazon basin. Ecohydrology 2017;10(8):e1889. 链接1

[10] Finch C, Pine III W, Limburg K. Do hydropeaking flows alter juvenile fish growth rates? A test with juvenile humpback chub in the Colorado River. River Res Appl 2015;31(2):156–64. 链接1

[11] Buddendorf W, Malcolm I, Geris J, Fabris L, Millidine K, Wilkinson M, et al. Spatio-temporal effects of river regulation on habitat quality for Atlantic salmon fry. Ecol Indic 2017;83:292–302. 链接1

[12] King AJ, Gwinn DC, Tonkin Z, Mahoney J, Raymond S, Beesley L. Using abiotic drivers of fish spawning to inform environmental flow management. J Appl Ecol 2016;53(1):34–43. 链接1

[13] Fellman JB, Hood E, Nagorski S, Hudson J, Pyare S. Interactive physical and biotic factors control dissolved oxygen in salmon spawning streams in coastal Alaska. Aquat Sci 2019;81(1):2. 链接1

[14] Glotzbecker GJ, Ward JL, Walters DM, Blum MJ. Turbidity alters pre-mating social interactions between native and invasive stream fishes. Freshw Biol 2015;60(9):1784–93. 链接1

[15] McBride RS, Somarakis S, Fitzhugh GR, Albert A, Yaragina NA, Wuenschel MJ, et al. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish Fish 2015;16(1):23–57. 链接1

[16] Davies PM, Naiman RJ, Warfe DM, Pettit NE, Arthington AH, Bunn SE. Flow– ecology relationships: closing the loop on effective environmental flows. Mar Freshw Res 2014;65(2):133–41. 链接1

[17] Lechner A, Keckeis H, Schludermann E, Humphries P, McCasker N, Tritthart M. Hydraulic forces impact larval fish drift in the free flowing section of a large European river. Ecohydrology 2014;7(2):648–58. 链接1

[18] Cao L, Naylor R, Henriksson P, Leadbitter D, Metian M, Troell M, et al. China’s aquaculture and the world’s wild fisheries. Science 2015;347(6218):133–5. 链接1

[19] Duan X, Liu S, Huang M, Qiu S, Li Z, Wang K, et al. Changes in abundance of larvae of the four domestic Chinese carps in the middle reach of the Yangtze River, China, before and after closing of the three gorges dam. Environ Biol Fish 2009;86:13. 链接1

[20] Xie P, Chen Y. Invasive carp in China’s plateau lakes. Science 2001;294 (5544):999–1000. 链接1

[21] Li J, Xia Z, Wang Y. A time-series model for assessing instantaneous physical conditions in carp habitats. Ecohydrology 2013;6(3):393–401. 链接1

[22] Solomon LE, Pendleton RM, Chick JH, Casper AF. Long-term changes in fish community structure in relation to the establishment of Asian carps in a large floodplain river. Biol Invasions 2016;18(10):2883–95. 链接1

[23] Chick JH, Gibson-Reinemer DK, Soeken-Gittinger L, Casper AF. Invasive silver carp is empirically linked to declines of native sport fish in the Upper Mississippi River System. Biol Invasions 2019;22:723–34. 链接1

[24] Koehn J. A powerful invader: carp in Australia. Wildl Aust 2016;53:43. 链接1

[25] Ding C, Jiang X, Xie Z, Brosse S. Seventy-five years of biodiversity decline of fish assemblages in Chinese isolated plateau lakes: widespread introductions and extirpations of narrow endemics lead to regional loss of dissimilarity. Divers Distrib 2017;23(2):171–84. 链接1

[26] Kopf RK, Nimmo DG, Humphries P, Baumgartner LJ, Bode M, Bond NR, et al. Confronting the risks of large-scale invasive species control. Nat Ecol Evol 2017;1(6):1–4. 链接1

[27] Marshall J, Davison AJ, Kopf RK, Boutier M, Stevenson P, Vanderplasschen A. Biocontrol of invasive carp: risks abound. Science 2018;359(6378):877. 链接1

[28] XuW, Qiao Y, Chen XJ, Cai YP, Yang Z, Liu HG. Spawning activity of the four major Chinese carps in the middle mainstream of the Yangtze River, during the Three Gorges Reservoir operation period, China. J Appl Ichthyol 2015;31(5):846–54. 链接1

[29] Yi Y, Yang Z, Zhang S. Ecological influence of dam construction and river-lake connectivity on migration fish habitat in the Yangtze River basin, China. Procedia Environ Sci 2010;2:1942–54. 链接1

[30] Li M, Duan Z, Gao X, Cao W, Liu H. Impact of the Three Gorges Dam on reproduction of four major Chinese carps species in the middle reaches of the Changjiang River. Chin J Oceanol Limnol 2016;34(5):885–93. 链接1

[31] Vismara R, Azzellino A, Bosi R, Crosa G, Gentili G. Habitat suitability curves for brown trout (Salmo trutta fario L.) in the River Adda, Northern Italy: comparing univariate and multivariate approaches. Regul Rivers. Res Manage 2001;17 (1):37–50. 链接1

[32] Beland KF, Jordan RM, Meister AL. Water depth and velocity preferences of spawning Atlantic salmon in Maine rivers. N Am J Fish Manage 1982;2 (1):11–3. 链接1

[33] Kitamura W, Kobayashi M. The effect of water flow on spawning in the medaka, Oryzias latipes. Fish Physiol Biochem 2003;28(1–4):429–30. 链接1

[34] Kocovsky PM, Chapman DC, McKenna JE. Thermal and hydrologic suitability of Lake Erie and its major tributaries for spawning of Asian carps. J Great Lakes Res 2012;38(1):159–66. 链接1

[35] Islam MS, Akhter T. Tale of fish sperm and factors affecting sperm motility: a review. Adv Life Sci 2011;1(1):11–9. 链接1

[36] Garcia T, Murphy EA, Jackson PR, Garcia MH. Application of the FluEgg model to predict transport of Asian carp eggs in the Saint Joseph River (Great Lakes tributary). J Great Lakes Res 2015;41(2):374–86. 链接1

[37] Murphy EA, Jackson PR. Hydraulic and water-quality data collection for the investigation of great lakes tributaries for asian carp spawning and egg transport suitability. Scientific Investigations Report. US Department of the Interior: US Geological Survey; 2013. Report No.: 2013-5106.

[38] Amado LL, Monserrat JM. Oxidative stress generation by microcystins in aquatic animals: why and how. Environ Int 2010;36(2):226–35. 链接1

[39] Johnston I, Vieira V, Temple G. Functional consequences and population differences in the developmental plasticity of muscle to temperature in Atlantic herring Clupea harengus. Mar Ecol Prog Ser 2001;213:285–300. 链接1

[40] Haworth MR, Bestgen KR. Flow and water temperature affect reproduction and recruitment of a Great Plains cyprinid. Can J Fish Aquat Sci 2016;74(6):853–63. 链接1

[41] Peter RE. The brain and neurohormones in teleost reproduction. In: Fish physiology. Amsterdam: Elsevier; 1983. p. 97–135. 链接1

[42] Rodríguez L, Carrillo M, Sorbera LA, Zohar Y, Zanuy S. Effects of photoperiod on pituitary levels of three forms of GnRH and reproductive hormones in the male European sea bass (Dicentrarchus labrax, L.) during testicular differentiation and first testicular recrudescence. Gen Comp Endocrinol 2004;136(1):37–48. 链接1

[43] El-Hawarry W, Nemaatallah B, Shinaway A. Induced spawning of silver carp, Hypophthalmichthys molitrix using hormones/hormonal analogue with dopamine antagonists. Online J Anim Feed Res 2012;2:58–63. 链接1

[44] Kolar CS, Chapman DC, Courtenay WR Jr, Housel CM, Williams JD, Jennings DP. Bigheaded carps: a biological synopsis and environmental risk assessment. Bethesda: American Fisheries Society; 2007. 链接1

[45] Irons KS, Sass G, McClelland M, Stafford J. Reduced condition factor of two native fish species coincident with invasion of non-native Asian carps in the Illinois River, USA. Is this evidence for competition and reduced fitness? J Fish Biol 2007;71:258–73. 链接1

[46] Sass GG, Cook TR, Irons KS, McClelland MA, Michaels NN, O’Hara TM, et al. A mark-recapture population estimate for invasive silver carp (Hypophthalmichthys molitrix) in the La Grange Reach, Illinois River. Biol Invasions 2010;12(3):433–6. 链接1

[47] Coulter AA, Keller D, Amberg JJ, Bailey EJ, Goforth RR. Phenotypic plasticity in the spawning traits of bigheaded carp (Hypophthalmichthys spp.) in novel ecosystems. Freshw Biol 2013;58(5):1029–37. 链接1

[48] Zielinski D, Voller VR, Sorensen PW. A physiologically inspired agent-based approach to model upstream passage of invasive fish at a lock-and-dam. Ecol Modell 2018;382:18–32. 链接1

[49] Parker AD, Glover DC, Finney ST, Rogers PB, Stewart JG, Simmonds RL. Direct observations of fish incapacitation rates at a large electrical fish barrier in the Chicago Sanitary and Ship Canal. J Great Lakes Res 2015;41 (2):396–404. 链接1

[50] Murchy K, Cupp AR, Amberg JJ, Vetter BJ, Fredricks KT, Gaikowski MP, et al. Potential implications of acoustic stimuli as a non-physical barrier to silver carp and bighead carp. Fish Manage Ecol 2017;24(3):208–16. 链接1

[51] Lighten J, van Oosterhout C. Biocontrol of common carp in Australia poses risks to biosecurity. Nat Ecol Evol 2017;1:0087. 链接1

[52] Thresher R, van de Kamp J, Campbell G, Grewe P, Canning M, Barney M, et al. Sex-ratio-biasing constructs for the control of invasive lower vertebrates. Nat Biotechnol 2014;32(5):424–7. 链接1

相关研究