期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第9期 doi: 10.1016/j.eng.2020.06.019

含能材料的新型X射线和光学诊断学研究进展

a The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, China
b School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China

收稿日期: 2020-04-06 修回日期: 2020-05-25 录用日期: 2020-06-03 发布日期: 2020-08-11

下一篇 上一篇

摘要

含能材料在制备、加工或外刺激(如冲击压缩)过程中的热力学、物理和化学过程包含多个时空尺度,发掘其中的新现象、获取新数据以及了解内在机制都亟需时空分辨诊断技术。在本文中,我们简要回顾了一些新兴或已存在但较少应用于含能材料的新型诊断技术,包括二维(2D)和三维(3D)X射线成像、X射线衍射、相干X射线衍射成像、X射线小角度散射、太赫兹和光学吸收/发射光谱以及一维(1D)和二维激光速率/位移干涉技术。这些技术涉及的典型空间尺度主要是晶格尺度(纳米和微米),典型时间尺度包括飞秒、纳秒、微秒和毫秒;针对的科学问题和工程难题包括缺陷、强度、变形、热点、相变、反应和冲击感度。本文介绍了探测和数据分析的基本原理并辅以示例说明。同时,先进测量和实验复杂性方面还急需发展相应的数据分析和解析方法学以及多尺度模拟。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Rice BM. Overview of research in energetic materials. In: Politzer P, Murray JS, editors. Energetic materials: Part 1. Decomposition, crystal and molecular properties. Amsterdan: Elsevier; 2003. p. 1–3. 链接1

[ 2 ] Manaa MR. Initiation and decomposition mechanisms of energetic materials. In: Politzer P, Murray JS, editors. Energetic materials: Part 2. Detonation, combustion. Amsterdan: Elsevier; 2003. p. 71–100. 链接1

[ 3 ] Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 2008;151(2–3):289–305. 链接1

[ 4 ] Zhang W, Zhang J, Deng M, Qi X, Nie F, Zhang Q. A promising high-energydensity material. Nat Commun 2017;8(1):1–7. 链接1

[ 5 ] Agrawal JP. High energy materials: propellants, explosives and pyrotechnics. Hoboken: John Wiley and Sons Ltd.; 2010. 链接1

[ 6 ] Handley CA, Lambourn BD, Whitworth NJ, James HR, Belfield WJ. Understanding the shock and detonation response of high explosives at the continuum and meso scales. Appl Phys Rev 2018;5(1):011303. 链接1

[ 7 ] Bennett JG, Haberman KS, Johnson JN, Asay BW. A constitutive model for the non-shock ignition and mechanical response of high explosives. J Mech Phys Solids 1998;46(12):2303–22. 链接1

[ 8 ] Dlott DD. New developments in the physical chemistry of shock compression. Annu Rev Phys Chem 2011;62(1):575–97. 链接1

[ 9 ] Yeager JD, Luo SN, Jensen BJ, Fezzaa K, Montgomery DS, Hooks DE. High-speed synchrotron X-ray phase contrast imaging for analysis of low-Z composite microstructure. Compos Part A Appl S 2012;43(6):885–92. 链接1

[10] Smirnov E, Muzyrya A, Kostitsyn O, Badretdinova LC, Ten K, Pruuel E, et al. Investigation of micro-, meso-, and macrostructure of the condensed heterogeneous explosives using synchrotron radiation. Bull Russ Acad Sci Phys 2015;79(1):20–5. 链接1

[11] Liu Y, Xu J, Huang S, Li S, Wang Z, Li J, et al. Microstructure and performance of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystal clusters obtained by the solvation-desolvation process. J Energy Mater 2019;37 (3):282–92. 链接1

[12] Zhang J, Jackson TL. Effect of microstructure on the detonation initiation in energetic materials. Shock Waves 2019;29(2):327–38. 链接1

[13] Field JE. Hot spot ignition mechanisms for explosives. Acc Chem Res 1992;25 (11):489–96. 链接1

[14] Field JE, Bourne NK, Palmer SJP, Walley SM. Hotspot ignition mechanisms for explosives and propellants. Philos Trans R Soc London Ser A Phys Eng Sci 1992;339(1654):269–83. 链接1

[15] An Q, Zybin SV, Goddard WA, Jaramillo-Botero A, Blanco M, Luo SN. Elucidation of the dynamics for hot-spot initiation at nonuniform interfaces of highly shocked materials. Phys Rev B Condens Matter Mater Phys 2011;84 (22):220101. 链接1

[16] You S, Chen MW, Dlott DD, Suslick KS. Ultrasonic hammer produces hot spots in solids. Nat Commun 2015;6(1):6581. 链接1

[17] Halfpenny PJ, Roberts KJ, Sherwood JN. Dislocations in energetic materials. J Mater Sci 1984;19(5):1629–37. 链接1

[18] Cawkwell MJ, Ramos KJ, Hooks DE, Sewell TD. Homogeneous dislocation nucleation in cyclotrimethylene trinitramine under shock loading. J Appl Phys 2010;107(6):063512. 链接1

[19] Ciezak JA, Jenkins TA. The low-temperature high pressure phase diagram of energetic materials: I. hexahydro-1,3,5-trinitro-s-triazine. Propell Explos Pyrot 2008;33(5):390–5. 链接1

[20] Willey TM, Lauderbach L, Gagliardi F, Van Buuren T, Glascoe EA, Tringe JW, et al. Mesoscale evolution of voids and microstructural changes in HMXbased explosives during heating through the β-δ phase transition. J Appl Phys 2015;118(5):055901. 链接1

[21] Adams GF, Shaw Jr RW. Chemical reactions in energetic materials. Annu Rev Phys Chem 1992;43(1):311–40. 链接1

[22] Shaw MS, Johnson JD. Carbon clustering in detonations. J Appl Phys 1987;62 (5):2080–5. 链接1

[23] Greiner NR, Phillips DS, Johnson JD, Volk F. Diamonds in detonation soot. Nature 1988;333(6172):440–2. 链接1

[24] Ye S, Koshi M. Theoretical studies of energy transfer rates of secondary explosives. J Phys Chem B 2006;110(37):18515–20. 链接1

[25] Ye SJ, Tonokura K, Koshi M. Energy transfer rates and impact sensitivities of crystalline explosives. Combust Flame 2003;132(1–2):240–6. 链接1

[26] Tokmakoff A, Fayer MD, Dlott DD. Chemical reaction initiation and hot-spot formation in shocked energetic molecular materials. J Phys Chem 1993;97 (9):1901–13. 链接1

[27] Fried LE, Ruggiero AJ. Energy transfer rates in primary, secondary, and insensitive explosives. J Phys Chem 1994;98(39):9786–91. 链接1

[28] McNesby KL, Coffey CS. Spectroscopic determination of impact sensitivities of explosives. J Phys Chem B 1997;101(16):3097–104. 链接1

[29] Bourne NK, Milne AM. Shock to detonation transition in a plastic bonded explosive. J Appl Phys 2004;95(5):2379–85. 链接1

[30] Rethfeld B, Sokolowski-Tinten K, Von Der Linde D, Anisimov S. Timescales in the response of materials to femtosecond laser excitation. Appl Phys A Mater Sci Process 2004;79(4–6):767–9. 链接1

[31] Harilal SS, Brumfield BE, Cannon BD, Phillips MC. Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas. Anal Chem 2016;88(4):2296–302. 链接1

[32] Luo SN, Akins JA, Ahrens TJ, Asimow PD. Shock compressed MgSiO3 glass, enstatite, olivine, and quartz: optical emission, temperatures, and melting. J Geophys Res 2004;109:B05205. 链接1

[33] Chen P, Huang F, Dai K, Ding Y. Detection and characterization of long-pulse low-velocity impact damage in plastic bonded explosives. Int J Impact Eng 2005;31(5):497–508. 链接1

[34] Hooks DE, Ramos KJ, Martinez AR. Elastic-plastic shock wave profiles in oriented single crystals of cyclotrimethylene trinitramine (RDX) at 2.25 GPa. J Appl Phys 2006;100(2):024908. 链接1

[35] Parab ND, Roberts ZA, Harr MH, Mares JO, Casey AD, Gunduz IE, et al. High speed X-ray phase contrast imaging of energetic composites under dynamic compression. Appl Phys Lett 2016;109(13):131903. 链接1

[36] Zhao PD, Lu FY, Lin YL, Chen R, Li JL, Lu L. Technique for combined dynamic compression-shear testing of PBXs. Exp Mech 2012;52(2):205–13. 链接1

[37] Shi JC, Shang YL, Ye W, Zhang RT, Luo SN. Shock-tube experiments and chemical kinetic modeling study of CH4 sensitized by CH3NHCH3. Energy Fuels 2018;32(4):5588–95. 链接1

[38] Shang YL, Shi JC, Ning HB, Zhang RT, Wang HY, Luo SN. Ignition delay time measurements and kinetic modeling of CH4 initiated by CH3NO2. Fuel 2019;243:288–97. 链接1

[39] Wang X, Wu Y, Huang F. Thermal–mechanical–chemical responses of polymer-bonded explosives using a mesoscopic reactive model under impact loading. J Hazard Mater 2017;321(806):256–67. 链接1

[40] Oswald ID, Millar DI, Davidson AJ, Francis DJ, Marshall WG, Pulham CR, et al. High-pressure structural studies of energetic compounds. High Press Res 2010;30(2):280–91. 链接1

[41] Funk DJ, Calgaro F, Averitt RD, Asaki MLT, Taylor AJ. THz transmission spectroscopy and imaging: application to the energetic materials PBX 9501 and PBX 9502. Appl Spectrosc 2004;58(4):428–31. 链接1

[42] Federici JF, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, et al. THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond Sci Technol 2005;20(7):S266–80. 链接1

[43] Hua C, Zhang PJ, Lu XJ, Huang M, Dai B, Fu H. Research on the size of defects inside RDX/HMX crystal and shock sensitivity. Propell Explos Pyrot 2013;38 (6):775–80. 链接1

[44] Van der Heijden AEDM, Bouma RHB. Crystallization and characterization of RDX, HMX, and CL-20. Cryst Growth Des 2004;4(5):999–1007. 链接1

[45] Xiao Y, Sun Y, Zhen Y, Guo L, Yao L. Characterization, modeling and simulation of the impact damage for polymer bonded explosives. Int J Impact Eng 2017;103:149–58. 链接1

[46] Luo SN, Jensen BJ, Hooks DE, Fezzaa K, Ramos KJ, Yeager JD, et al. Gas gun shock experiments with single-pulse X-ray phase contrast imaging and diffraction at the Advanced Photon Source. Rev Sci Instrum 2012;83 (7):073903. 链接1

[47] Baxter JB, Guglietta GW. Terahertz spectroscopy. Anal Chem 2011;83 (12):4342–68. 链接1

[48] Fan D, Lu L, Li B, Qi ML, Eisenstein JC, Zhao F, et al. Transient X-ray diffraction with simultaneous imaging under high strain-rate loading. Rev Sci Instrum 2014;85(11):113902. 链接1

[49] Seiboth F, Fletcher LB, McGonegle D, Anzellini S, Dresselhaus-Cooper LE, Frost M, et al. Simultaneous 8.2 keV phase-contrast imaging and 24.6 keV X-ray diffraction from shock-compressed matter at the LCLS. Appl Phys Lett 2018;112(22):221907. 链接1

[50] Brown SB, Gleason AE, Galtier E, Higginbotham A, Arnold B, Fry A, et al. Direct imaging of ultrafast lattice dynamics. Sci Adv 2019;5(3):eaau8044. 链接1

[51] Zhang YY, Tang MX, Cai Y, Eisenstein JC, Luo SN. Deducing density and strength of nanocrystalline Ta and diamond under extreme conditions from X-ray diffraction. J Synchrotron Radiat 2019;26(Pt 2):413–21. 链接1

[52] Czerski H, Proud WG. Relationship between the morphology of granular cyclotrimethylene-trinitramine and its shock sensitivity. J Appl Phys 2007;102(11):113515. 链接1

[53] An Q, Liu Y, Zybin SV, Kim H, Goddard WA. Anisotropic shock sensitivity of cyclotrimethylene trinitramine (RDX) from compress-and-shear reactive dynamics. J Phys Chem C 2012;116(18):10198–206. 链接1

[54] Hudspeth M, Sun T, Parab N, Guo Z, Fezzaa K, Luo S, et al. Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading. J Synchrotron Radiat 2015;22(1):49–58. 链接1

[55] Brennan Brown S, Lee HJ, Nagler B, Galtier E, Xing Z, Gleason A, et al. Density measurements of dynamically-compressed, melting phase silicon via simultaneous in-situ X-ray diffraction and X-ray contrast imaging using the LCLS X-ray free electron laser at MEC. In: Proceedings of the 58th Annual Meeting of the APS Division of Plasma Physics; 2016 Oct 31–Nov 4; San Jose, CA, USA; 2016.

[56] Fan D, Huang JW, Zeng XL, Li Y, Eisenstein JC, Huang JY, et al. Simultaneous, single-pulse, synchrotron X-ray imaging and diffraction under gas gun loading. Rev Sci Instrum 2016;87(5):053903. 链接1

[57] Lu L, Huang JW, Fan D, Bie BX, Sun T, Fezzaa K, et al. Anisotropic deformation of extruded magnesium alloy AZ31 under uniaxial compression: a study with simultaneous in situ synchrotron X-ray imaging and diffraction. Acta Mater 2016;120:86–94. 链接1

[58] Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I. On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 1995;66(12):5486–92. 链接1

[59] Cloetens P, Barrett R, Baruchel J, Guigay JP, Schlenker M. Phase objects in synchrotron radiation hard X-ray imaging. J Phys D Appl Phys 1996;29 (1):133–46. 链接1

[60] Olinger B. Compacting plastic-bonded explosive molding powders to dense solids. Tech Report. Los Alamos: Los Alamos National Laboratory; 2005. Apr. Report No.:LA-14173. 链接1

[61] Paulson SC, Roberts ZA, Sorensen CJ, Kerschen NE, Harr MH, Parab ND, et al. Observation of damage during dynamic compression of production and lowdefect HMX crystals in Sylgard binder using X-ray phase contrast imaging. J Dyn Behav Mater 2020;6(1):34–44. 链接1

[62] Kerschen NE, Sorensen CJ, Guo Z, Mares JO, Fezzaa K, Sun T, et al. X-Ray phase contrast imaging of the impact of a single HMX particle in a polymeric matrix. Propell Explos Pyrot 2019;44(4):447–54. 链接1

[63] Kerschen NE, Drake JD, Sorensen CJ, Guo Z, Mares JO, Fezzaa K, et al. X-ray phase contrast imaging of the impact of multiple HMX particles in a polymeric matrix. Propell Explos Pyrot 2020;45(4):607–14. 链接1

[64] Lu L, Fan D, Bie BX, Ran XX, Qi ML, Parab N, et al. Note: dynamic strain field mapping with synchrotron X-ray digital image correlation. Rev Sci Instrum 2014;85(7):076101. 链接1

[65] Huang JY, Lu L, Fan D, Sun T, Fezzaa K, Xu SL, et al. Heterogeneity in deformation of granular ceramics under dynamic loading. Scr Mater 2016;111:114–8. 链接1

[66] Wang BR, Sun T, Fezzaa K, Huang JY, Luo SN. Rate-dependent deformation and Poisson’s effect in porous titanium. Mater Lett 2019;245:134–7. 链接1

[67] Pan B. Recent progress in digital image correlation. Exp Mech 2011;51 (7):1223–35. 链接1

[68] Wu SY, Bie BX, Fan D, Sun T, Fezzaa K, Feng ZD, et al. Dynamic shear localization of a titanium alloy under high-rate tension characterized by Xray digital image correlation. Mater Charact 2018;137:58–66. 链接1

[69] Bie BX, Huang JY, Su B, Lu L, Fan D, Eisenstein JC, et al. Dynamic tensile deformation and damage of B4C-reinforced Al composites: time-resolved imaging with synchrotron X-rays. Mater Sci Eng A 2016;664:86–93. 链接1

[70] Li HY, Chai HW, Xiao XH, Huang JY, Luo SN. Fractal breakage of porous carbonate sand particles: microstructures and mechanisms. Powder Technol 2020;363:112–21. 链接1

[71] Bie BX, Huang JY, Fan D, Sun T, Fezzaa K, Xiao XH, et al. Orientationdependent tensile deformation and damage of a T700 carbon fiber/epoxy composite: A synchrotron-based study. Carbon 2017;121:127–33. 链接1

[72] Chai HW, Xie ZL, Xiao XH, Xie HL, Huang JY, Luo SN. Microstructural characterization and constitutive modelling of deformation of closed-cell foams based on in situ X-ray tomography. Int J Plast 2020;131:102730. 链接1

[73] Sjödahl M, Siviour CR, Forsberg F. Digital volume correlation applied to compaction of granular materials. Procedia IUTAM 2012;4:179–95. 链接1

[74] Zhang WB, Huang H, Tian Y, Dai B. Characterization of RDX-based thermosetting plastic-bonded explosive by cone-beam microfocus computed tomography. J Energ Mater 2012;30(3):196–208. 链接1

[75] Manner VW, Yeager JD, Patterson BM, Walters DJ, Stull JA, Cordes NL, et al. In situ imaging during compression of plastic bonded explosives for damage modeling. Materials (Basel) 2017;10(6):638. 链接1

[76] Hu Z, Luo H, Bardenhagen SG, Siviour CR, Armstrong RW, Lu H. Internal deformation measurement of polymer bonded sugar in compression by digital volume correlation of in-situ tomography. Exp Mech 2015;55 (1):289–300. 链接1

[77] Yuan ZN, Chen H, Li JM, Dai B, Zhang WB. In-situ X-ray tomography observation of structure evolution in 1,3,5-triamino-2,4,6-trinitrobenzene based polymer bonded explosive (TATB-PBX) under thermo-mechanical loading. Materials 2018;11(5):732. 链接1

[78] Chen L, Wu L, Liu Y, Chen W. In situ observation of void evolution in 1,3,5- triamino-2,4,6-trinitrobenzene under compression by synchrotron radiation X-ray nano-computed tomography. J Synchrotron Radiat 2020;27(Pt 1):127–33. 链接1

[79] Yao Y, Chai HW, Li C, Bie BX, Xiao XH, Huang JY, et al. Deformation and damage of sintered low-porosity aluminum under planar impact: microstructures and mechanisms. J Mater Sci 2018;53(6):4582–97. 链接1

[80] Pan B, Wu D, Wang Z. Internal displacement and strain measurement using digital volume correlation: a least-squares framework. Meas Sci Technol 2012;23(4):045002. 链接1

[81] García-Moreno F, Kamm PH, Neu TR, Bülk F, Mokso R, Schlepütz CM, et al. Using X-ray tomoscopy to explore the dynamics of foaming metal. Nat Commun 2019;10(1):3762. 链接1

[82] Baker DR, Brun F, O’Shaughnessy C, Mancini L, Fife JL, Rivers M, et al. A fourdimensional X-ray tomographic microscopy study of bubble growth in basaltic foam. Nat Commun 2012;3(1):1135. 链接1

[83] Nommeots-Nomm A, Ligorio C, Bodey A, Cai B, Jones JR, Lee PD, et al. Fourdimensional imaging and quantification of viscous flow sintering within a 3D printed bioactive glass scaffold using synchrotron X-ray tomography. Mater Today Adv 2019;2:100011. 链接1

[84] Sloof WG, Pei R, McDonald SA, Fife JL, Shen L, Boatemaa L, et al. Repeated crack healing in MAX-phase ceramics revealed by 4D in situ synchrotron Xray tomographic microscopy. Sci Rep 2016;6(1):23040. 链接1

[85] Lu X, Fernández MP, Bradley RS, Rawson SD, O’Brien M, Hornberger B, et al. Anisotropic crack propagation and deformation in dentin observed by fourdimensional X-ray nano-computed tomography. Acta Biomater 2019;96:400–11. 链接1

[86] White DJ, Take WA, Bolton MD. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique 2003;53 (7):619–31. 链接1

[87] Parker G, Bourne N, Eastwood D, Jacques S, Dickson P, Lopez-Pulliam I, et al. 4D imaging in thermally damaged polymer-bonded explosives. In: Proceedings of the 20th Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matter; 2017 Jul 9–14; St. Louis, MO, USA; 2017.

[88] Zellner MB, Champley K. Development of a computed tomography system capable of tracking high-velocity unbounded material through a reconstruction volume. Int J Impact Eng 2019;129:26–35. 链接1

[89] Walters DJ, Luscher DJ, Yeager JD, Patterson BM. Cohesive finite element modeling of the delamination of HTPB binder and HMX crystals under tensile loading. Int J Mech Sci 2018;140:151–62. 链接1

[90] Hu R, Prakash C, Tomar V, Harr M, Gunduz IE, Oskay C. Experimentallyvalidated mesoscale modeling of the coupled mechanical–thermal response of AP–HTPB energetic material under dynamic loading. Int J Fract 2017;203 (1–2):277–98. 链接1

[91] Huang JH, Lu SJ, Xie FY, Liu W, Xiao CW, Zhang JJ, et al. Finite element analysis of synergetic deformation in precision cutting of polymer bonded explosive. Mater Des 2020;188:108471. 链接1

[92] Harewood FJ, McHugh PE. Comparison of the implicit and explicit finite element methods using crystal plasticity. Comput Mater Sci 2007;39 (2):481–94. 链接1

[93] Henning GF. Process for making a nitro compound from hexamethylenetetramine. German patent DE 104280; 1899.

[94] Hultgren R. An X-ray study of symmetrical trinitrotoluene and cyclo trimethylenetrinitramine. J Chem Phys 1936;4(1):84. 链接1

[95] McCrone WC. Crystallographic data. 32. RDX (cyclotrimethylenetrinitramine). Anal Chem 1950;22(7):954–5. 链接1

[96] Miller PJ, Block S, Piermarini GJ. Effects of pressure on the thermal decomposition kinetics, chemical reactivity and phase behavior of RDX. Combust Flame 1991;83(1–2):174–84. 链接1

[97] Millar DIA, Oswald IDH, Francis DJ, Marshall WG, Pulham CR, Cumming AS. The crystal structure of b-RDX—an elusive form of an explosive revealed. Chem Commun 2009;7(5):562–4. 链接1

[98] Gao C, Yang L, Zeng Y, Wang X, Zhang C, Dai R, et al. Growth and characterization of b-RDX single-crystal particles. J Phys Chem C 2017;121 (33):17586–94. 链接1

[99] Baer BJ, Oxleyf J, Nicol M. The phase diagram of RDX (hexahydro-1,3,5- trinitro-s-triazine) under hydrostatic pressure. High Press Res 1990;2 (2):99–108. 链接1

[100] Gao C, Zhang X, Zhang C, Sui Z, Hou M, Dai R, et al. Effect of pressure gradient and new phases for 1,3,5-trinitrohexahydro-s-triazine (RDX) under high pressures. PCCP 2018;20(21):14374–83. 链接1

[101] Goto N, Fujihisa H, Yamawaki H, Wakabayashi K, Nakayama Y, Yoshida M, et al. Crystal structure of the high-pressure phase of hexahydro-1,3,5- trinitro-1,3,5-triazine (c-RDX). J Phys Chem B 2006;110(47):23655–9. 链接1

[102] Davidson AJ, Oswald ID, Francis DJ, Lennie AR, Marshall WG, Millar DI, et al. Explosives under pressure-the crystal structure of c-RDX as determined by high-pressure X-ray and neutron diffraction. Cryst Eng Comm 2008;10 (2):162–5. 链接1

[103] Dresselhaus-Cooper LE, Martynowych DJ, Zhang F, Tsay C, Ilavsky J, Wang SG, et al. Pressure-thresholded response in cylindrically shocked cyclotrimethylene trinitramine (RDX). J Phys Chem A 2020;124(17):3301–13.

[104] Ramos K, Addessio FL, Armenta CE, Banesh D, Barber JL, Biwer CM, et al. In situ investigation of phase transformation in cyclotrimethylene trinitramine (RDX) during shock loading using X-ray diffraction. Bull Am Phys Soc 2019;64(8). 链接1

[105] Turneaure SJ, Sinclair N, Gupta YM. Real-time examination of atomistic mechanisms during shock-induced structural transformation in silicon. Phys Rev Lett 2016;117(4):045502. 链接1

[106] Chen S, Li YX, Zhang NB, Huang JW, Hou HM, Ye SJ, et al. Capture deformation twinning in Mg during shock compression with ultrafast synchrotron X-ray diffraction. Phys Rev Lett 2019;123(25):255501. 链接1

[107] Choi CS, Prince E. The crystal structure of cyclotrimethylenetrinitramine. Acta Crystallogr B 1972;28(9):2857–62. 链接1

[108] E JC, Wang L, Chen S, Zhang YY, Luo SN. GAPD: a GPU-accelerated atom-based polychromatic diffraction simulation code. J Synchrotron Radiat 2018;25(Pt 2):604–11. 链接1

[109] Warren BE. X-ray diffraction. New York: Dover Publications; 1990. 链接1

[110] Ciezak JA, Jenkins TA, Liu Z, Hemley RJ. High-pressure vibrational spectroscopy of energetic materials: hexahydro-1,3,5-trinitro-1,3,5-triazine. J Phys Chem A 2007;111(1):59–63. 链接1

[111] Singh AK. The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. J Appl Phys 1993;73 (9):4278–86. 链接1

[112] Haycraft JJ, Stevens LL, Eckhardt CJ. The elastic constants and related properties of the energetic material cyclotrimethylene trinitramine (RDX) determined by Brillouin scattering. J Chem Phys 2006;124(2):024712. 链接1

[113] Huang B, Cao MH, Huang H, Hu CW. Construction and properties of structureand size-controlled micro/nano-energetic materials. Def Technol 2013;9 (2):59–79. 链接1

[114] Khasainov B, Ermolaev B, Presles HN, Vidal P. On the effect of grain size on shock sensitivity of heterogeneous high explosives. Shock Waves 1997;7 (2):89–105. 链接1

[115] Borne L, Patedoye JC, Spyckerelle C. Quantitative characterization of internal defects in RDX crystals. Propell Explos Pyrot 1999;24(4):255–9. 链接1

[116] Cady HH. Growth and defects of explosives crystals. MRS OPL 1993;296:243–54. 链接1

[117] Yan T, Wang JH, Liu YC, Zhao J, Yuan JM, Guo JH. Growth and morphology of 1,3,5,7-tetranitro-1,3,5,7-tetraazacy-clooct ane (HMX) crystal. J Cryst Growth 2015;430(1125):7–13. 链接1

[118] Chapman HN, Nugent KA. Coherent lensless X-ray imaging. Nat Photonics 2010;4(12):833–9. 链接1

[119] Yau A, Cha W, Kanan MW, Stephenson GB, Ulvestad A. Bragg coherent diffractive imaging of single-grain defect dynamics in polycrystalline films. Science 2017;356(6339):739–42. 链接1

[120] Williams GJ, Pfeifer MA, Vartanyants IA, Robinson IK. Three-dimensional imaging of microstructure in Au nanocrystals. Phys Rev Lett 2003;90 (17):175501. 链接1

[121] Barty A, Marchesini S, Chapman HN, Cui C, Howells MR, Shapiro DA, et al. Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms. Phys Rev Lett 2008;101(5):055501. 链接1

[122] Kawaguchi T, Keller TF, Runge H, Gelisio L, Seitz C, Kim YY, et al. Gas–induced segregation in Pt-Rh alloy nanoparticles observed by in situ Bragg coherent diffraction imaging. Phys Rev Lett 2019;123(24):246001. 链接1

[123] Robinson IK, Vartanyants IA, Williams GJ, Pfeifer MA, Pitney JA. Reconstruction of the shapes of gold nanocrystals using coherent X-ray diffraction. Phys Rev Lett 2001;87(19):195505. 链接1

[124] Giewekemeyer K, Thibault P, Kalbfleisch S, Beerlink A, Kewish CM, Dierolf M, et al. Quantitative biological imaging by ptychographic X-ray diffraction microscopy. Proc Natl Acad Sci USA 2010;107(2):529–34. 链接1

[125] Barty A, Boutet S, Bogan MJ, Hau-Riege S, Marchesini S, Sokolowski-Tinten K, et al. Ultrafast single-shot diffraction imaging of nanoscale dynamics. Nat Photonics 2008;2(7):415–9. 链接1

[126] Robinson I, Harder R. Coherent X-ray diffraction imaging of strain at the nanoscale. Nat Mater 2009;8(4):291–8. 链接1

[127] Favre-Nicolin V, Mastropietro F, Eymery J, Camacho D, Niquet Y, Borg B, et al. Analysis of strain and stacking faults in single nanowires using Bragg coherent diffraction imaging. New J Phys 2010;12(3):035013. 链接1

[128] Cherukara MJ, Pokharel R, O’Leary TS, Baldwin JK, Maxey E, Cha W, et al. Three-dimensional X-ray diffraction imaging of dislocations in polycrystalline metals under tensile loading. Nat Commun 2018;9(1):1–6. 链接1

[129] Ziaja B, Chapman H, Fäustlin R, Hau-Riege S, Jurek Z, Martin A, et al. Limitations of coherent diffractive imaging of single objects due to their damage by intense X-ray radiation. New J Phys 2012;14(11):115015. 链接1

[130] Fan J, Sun Z, Wang Y, Park J, Kim S, Gallagher-Jones M, et al. Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray freeelectron laser. Sci Rep 2016;6(1):34008. 链接1

[131] Rath AD, Timneanu N, Maia FR, Bielecki J, Fleckenstein H, Iwan B, et al. Explosion dynamics of sucrose nanospheres monitored by time of flight spectrometry and coherent diffractive imaging at the split-and-delay beam line of the FLASH soft X-ray laser. Opt Express 2014;22(23):28914–25. 链接1

[132] Ravindran S, Tessema A, Kidane A. Multiscale damage evolution in polymer bonded sugar under dynamic loading. Mech Mater 2017;114:97–106. 链接1

[133] Spitzer D, Risse B, Schnell F, Pichot V, Klaumünzer M, Schaefer MR. Continuous engineering of nano-cocrystals for medical and energetic applications. Sci Rep 2014;4(1):6575. 链接1

[134] Rossi C, Zhang K, Esteve D, Alphonse P, Tailhades P, Vahlas C. Nanoenergetic materials for MEMS: a review. J Microelectromech Syst 2007;16(4):919–31. 链接1

[135] Sundaram D, Yang V, Yetter RA. Metal-based nanoenergetic materials: synthesis, properties, and applications. Prog Energ Combust 2017;61:293–365. 链接1

[136] Chen S, Chai HW, He AM, Tschentscher T, Cai Y, Luo SN. Resolving dynamic fragmentation of liquids at the nanoscale with ultrafast small-angle X-ray scattering. J Synchrotron Radiat 2019;26(Pt 5):1412–21. 链接1

[137] Zhang TF, Ma Z, Li GP, Wang Z, Zhao BB, Luo YJ. Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe2O3/multiwalled carbon nanotube (MWCNT). J Solid State Chem 2016;237:394–403. 链接1

[138] Tang DY, Lyu J, He W, Chen J, Yang G, Liu PJ, et al. Metastable intermixed coreshell Al@M(IO3)x nanocomposites with improved combustion efficiency by using tannic acid as a functional interfacial layer. Chem Eng J 2020;384:123369. 链接1

[139] Zhou X, Wang YJ, Cheng ZP, Ke X, Jiang W. Facile preparation and energetic characteristics of core–shell Al/CuO metastable intermolecular composite thin film on a silicon substrate. Chem Eng J 2017;328:585–90. 链接1

[140] Liu HC, Zhang JD, Gou JY, Sun YY. Preparation of Fe2O3/Al composite powders by homogeneous precipitation method. Adv Powder Technol 2017;28 (12):3241–6. 链接1

[141] Bellitto VJ, Melnik MI, Sherlock MH, Chang JC, O’Connor JH, Mackey JA. Microstructure effects on the detonation velocity of a heterogeneous highexplosive. J Energ Mater 2018;36(4):485–92. 链接1

[142] Horie Y. Hot spots, high explosives ignition, and material microstructure. Mater Sci Forum 2014;767:3–12. 链接1

[143] Maienschein J. Research topics in explosives—a look at explosives behaviors. J Phys Conf Ser 2014;500:052027. 链接1

[144] Wang H, Xu J, Sun S, Liu Y, Zhu C, Li J, et al. Characterization of crystal microstructure based on small angle X-ray scattering (SAXS) technique. Molecules 2020;25(3):443. 链接1

[145] Viecelli J, Ree F. Carbon clustering kinetics in detonation wave propagation. J Appl Phys 1999;86(1):237–48. 链接1

[146] Bastea S. Aggregation kinetics of detonation nanocarbon. Appl Phys Lett 2012;100(21):214106. 链接1

[147] Bastea S. Nanocarbon condensation in detonation. Sci Rep 2017;7(1):42151. 链接1

[148] Mang J, Skidmore C, Howe P, Hjelm R, Rieker T. Structural characterization of energetic materials by small angle scattering. AIP Conf Proc 2000;505:699–702. 链接1

[149] Willey TM, Van Buuren T, Lee JR, Overturf GE, Kinney JH, Handly J, et al. Changes in pore size distribution upon thermal cycling of TATB-based explosives measured by ultra-small angle X-ray scattering. Propell Explos Pyrot 2006;31(6):466–71. 链接1

[150] Capatina D, D’Amico K, Nudell J, Collins J, Schmidt O. DCS—a high flux beamline for time resolved dynamic compression science—design highlights. AIP Conf Proc 2016;1741:030036. 链接1

[151] Bagge-Hansen M, Lauderbach L, Hodgin R, Bastea S, Fried L, Jones A, et al. Measurement of carbon condensates using small-angle X-ray scattering during detonation of the high explosive hexanitrostilbene. J Appl Phys 2015;117(24):245902. 链接1

[152] Gustavsen RL, Dattelbaum DM, Watkins EB, Firestone MA, Podlesak DW, Jensen BJ, et al. Time resolved small angle X-ray scattering experiments performed on detonating explosives at the advanced photon source: Calculation of the time and distance between the detonation front and the X-ray beam. J Appl Phys 2017;121(10):105902. 链接1

[153] Huber RC, Ringstrand BS, Dattelbaum DM, Gustavsen RL, Seifert S, Firestone MA, et al. Extreme condition nanocarbon formation under air and argon atmospheres during detonation of composition B-3. Carbon 2018;126:289–98. 链接1

[154] Chen S, Luo SN. Small-angle scattering of polychromatic X-rays: effects of bandwidth, spectral shape and high harmonics. J Synchrotron Radiat 2018;25 (Pt 2):496–504. 链接1

[155] Hammons JA, Nielsen MH, Bagge-Hansen M, Bastea S, Shaw WL, Lee JR, et al. Resolving detonation nanodiamond size evolution and morphology at submicrosecond timescales during high-explosive detonations. J Phys Chem C 2019;123(31):19153–64. 链接1

[156] Hammons JA, Nielsen MH, Bagge-Hansen M, Lauderbach LM, Hodgin RL, Bastea S, et al. Observation of variations in condensed carbon morphology dependent on composition B detonation conditions. Propell Explos Pyrot 2020;45(2):347–55. 链接1

[157] Dreizin EL. Metal-based reactive nanomaterials. Prog Energ Combust 2009;35 (2):141–67. 链接1

[158] He W, Liu PJ, He GQ, Gozin M, Yan QL. Highly reactive metastable intermixed composites (MICs): preparation and characterization. Adv Mater 2018;30 (41):e1706293. 链接1

[159] Jacob RJ, Jian G, Guerieri PM, Zachariah MR. Energy release pathways in nanothermites follow through the condensed state. Combust Flame 2015;162(1):258–64. 链接1

[160] Shende R, Subramanian S, Hasan S, Apperson S, Thiruvengadathan R, Gangopadhyay K, et al. Nanoenergetic composites of CuO nanorods, nanowires, and Al-nanoparticles. Propell Explos Pyrot 2008;33(2):122–30. 链接1

[161] Walker JD, Tannenbaum R. Characterization of the sol-gel formation of iron (III) oxide/hydroxide nanonetworks from weak base molecules. Chem Mater 2006;18(20):4793–801. 链接1

[162] Son SF. Performance and characterization of nanoenergetic materials at Los Alamos. Mater Res Soc 2003;800(AA5):2. 链接1

[163] Qin L, Gong T, Hao H, Wang K, Feng H. Core–shell structured nanothermites synthesized by atomic layer deposition. J Nanopart Res 2013;15(12):2150. 链接1

[164] Wang J, Qiao Z, Yang Y, Shen J, Long Z, Li Z, et al. Core–shell Al– polytetrauoroethylene (PTFE) configurations to enhance reaction kinetics and energy performance for nanoenergetic materials. Chemistry 2016;22 (1):279–84. 链接1

[165] Chen S, E J, Luo SN. SLADS: a parallel code for direct simulations of scattering of large anisotropic dense nanoparticle systems. J Appl Cryst 2017;50(3):951–8.

[166] Lu L, Bie BX, Li QH, Sun T, Fezzaa K, Gong XL, et al. Multiscale measurements on temperature-dependent deformation of a textured magnesium alloy with synchrotron X-ray imaging and diffraction. Acta Mater 2017;132:389–94. 链接1

[167] Zhao YL, Li GG, Hou HM, Shi JC, Luo SN. CN and C2 formation mechanisms in fs-laser induced breakdown of nitromethane in Ar or N2 atmosphere. J Hazard Mater 2020;393:122396. 链接1

[168] Campbell MB, Heilweil EJ. Noninvasive detection of weapons of mass destruction using terahertz radiation. Proc SPIE 2003;5070:38–43. 链接1

[169] Guo L, Hu Y, Zhang Y, Zhang C, Chen Y, Zhang XC. Vibrational spectrum of cHNIW investigated using terahertz time-domain spectroscopy. Opt Express 2006;14(8):3654–9. 链接1

[170] Melinger JS, Laman N, Grischkowsky D. The underlying terahertz vibrational spectrum of explosives solids. Appl Phys Lett 2008;93(1):011102. 链接1

[171] Melinger JS, Harsha SS, Laman N, Grischkowsky D. Temperature dependent characterization of terahertz vibrations of explosives and related threat materials. Opt Express 2010;18(26):27238–50. 链接1

[172] Damarla G, Venkatesh M, Chaudhary AK. Temperature-dependent terahertz spectroscopy and refractive index measurements of aqua-soluble and plastic explosives. Appl Opt 2018;57(29):8743–50. 链接1

[173] Zhang W, Nickel D, Mittleman D. High-pressure cell for terahertz timedomain spectroscopy. Opt Express 2017;25(3):2983–93. 链接1

[174] Lewis W. Nevada test site-directed research and development, FY 2007 Report. Technical Report. Oak Ridge: US Department of Energy; 2006. Report No.: DOE/NV/25946-022; DOE/NV/11718-1245. Contract No.: DE-AC52- 06NA25946. 链接1

[175] Gebs R, Klatt G, Janke C, Dekorsy T, Bartels A. High-speed asynchronous optical sampling with sub-50 fs time resolution. Opt Express 2010;18 (6):5974–83. 链接1

[176] Brown KE, McGrane SD, Bolme CA, Moore DS. Ultrafast chemical reactions in shocked nitromethane probed with dynamic ellipsometry and transient absorption spectroscopy. J Phys Chem A 2014;118(14):2559–67. 链接1

[177] Bowlan P, Powell M, Perriot R, Martinez E, Kober EM, Cawkwell MJ, et al. Probing ultrafast shock-induced chemistry in liquids using broad-band midinfrared absorption spectroscopy. J Chem Phys 2019;150(20):204503. 链接1

[178] Holmes NC, Nellis WJ, Graham WB, Walrafen GE. Spontaneous Raman scattering from shocked water. Phys Rev Lett 1985;55(22):2433–6. 链接1

[179] Schmidt S, Moore D, Shaner J, Shampine D, Holt W. Coherent anti-stokes Raman scattering in benzene and nitromethane shock-compressed to 10 GPa. Physica 1986;139:587–9. 链接1

[180] Tas G, Franken J, Hambir SA, Hare DE, Dlott DD. Ultrafast Raman spectroscopy of shock fronts in molecular solids. Phys Rev Lett 1997;78(24):4585–8. 链接1

[181] Miller JE, Boehly TR, Melchior A, Meyerhofer DD, Celliers PM, Eggert JH, et al. Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA. Rev Sci Instrum 2007;78(3):034903. 链接1

[182] Zhang C, Liu H, Duan X, Liu Y, Zhang H, Sun L, et al. Study of M-band X-ray preheating effect on shock propagation via streaked optical pyrometer system at SG-III prototype lasers. Phys Plasmas 2019;26(1):012708. 链接1

[183] Bouyer V, Darbord I, Hervé P, Baudin G, Le Gallic C, Clément F, et al. Shock-todetonation transition of nitromethane: time-resolved emission spectroscopy measurements. Combust Flame 2006;144(1–2):139–50. 链接1

[184] Shaik AK, Epuru NR, Syed H, Byram C, Soma VR. Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis. Opt Express 2018;26 (7):8069–83. 链接1

[185] Rao EN, Sunku S, Rao SV. Femtosecond laser-induced breakdown spectroscopy studies of nitropyrazoles: the effect of varying nitro groups. Appl Spectrosc 2015;69(11):1342–54. 链接1

[186] Gottfried JL, De Lucia FC Jr, Munson CA, Miziolek AW. Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection. Spectrochim Acta B At Spectrosc 2007;62(12):1405–11. 链接1

[187] Dikmelik Y, McEnnis C, Spicer JB. Femtosecond and nanosecond laserinduced breakdown spectroscopy of trinitrotoluene. Opt Express 2008;16 (8):5332–7. 链接1

[188] Dong M, Lu J, Yao S, Zhong Z, Li J, Li J, et al. Experimental study on the characteristics of molecular emission spectroscopy for the analysis of solid materials containing C and N. Opt Express 2011;19(18):17021–9. 链接1

[189] Ran PX, Hou HM, Luo SN. Molecule formation induced by non-uniform plume–air interactions in laser induced plasma. J Anal At Spectrom 2017;32 (11):2254–62. 链接1

[190] Civiš M, Civiš S, Sovová K, Dryahina K, Španeˇl P, Kyncl M. Laser ablation of FOX-7: proposed mechanism of decomposition. Anal Chem 2011;83 (3):1069–77. 链接1

[191] Hori T, Akamatsu F. Laser-induced breakdown plasma observed using a streak camera. Jpn J Appl Phys 2008;47(6R):4759–61. 链接1

[192] Rabasovic MS, Rabasovic MD, Marinkovic BP, Sevic D. Laser-induced plasma measurements using Nd: YAG laser and streak camera: Timing considerations. Atoms 2019;7(1):6. 链接1

[193] Celliers PM, Bradley DK, Collins GW, Hicks DG, Boehly TR, Armstrong WJ. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility. Rev Sci Instrum 2004;75(11):4916–29. 链接1

[194] Celliers PM, Erskine DJ, Sorce CM, Braun DG, Landen OL, Collins GW. A highresolution two-dimensional imaging velocimeter. Rev Sci Instrum 2010;81 (3):035101. 链接1

[195] Greenfield SR, Casson JL, Koskelo AC. Nanosecond interferometric studies of surface deformations of dielectrics induced by laser irradiation. In: Proceedings of the Laser-Induced Damage in Optical Materials: 1999; 1999 Oct 4–7; Boulder, CO, USA; 2000.

[196] Gahagan KT, Moore DS, Funk DJ, Reho JH, Rabie RL. Ultrafast interferometric microscopy for laser-driven shock wave characterization. J Appl Phys 2002;92(7):3679–82. 链接1

[197] Temnov VV, Sokolowski-Tinten K, Von der Zhou P, Linde D. Femtosecond time-resolved interferometric microscopy. Appl Phys A Mater Sci Process 2004;78(4):483–9. 链接1

[198] Greenfield SR, Luo SN, Paisley DL, Loomis EN, Swift DC, Koskelo AC. Transient imaging displacement interferometry applied to shock loading. AIP Conf Proc 2007;955(1):1093–6. 链接1

[199] Wu Y, Wang F, Wang Q, Li Y, Jiang S. A high temporal resolution numerical algorithm for shock wave velocity diagnosis. Sci Rep 2019;9(1):8597. 链接1

相关研究