期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第7期 doi: 10.1016/j.eng.2020.06.021

复杂结构中异常区域对波速成像影响的量化研究

School of Resources and Safety Engineering, Central South University, Changsha 410083, China

收稿日期: 2020-03-05 修回日期: 2020-04-30 录用日期: 2020-06-10 发布日期: 2020-10-17

下一篇 上一篇

摘要

复杂结构中异常区域的探测是地下空间开发急需解决的技术瓶颈。人工开挖和天然因素导致的地质结构变化大大降低了传统勘探方法的效率。随着实时监测技术的出现,波速场精确成像使异常区域精准探测成为可能。但成像结果易受到多种因素的影响,尤其在小尺度上应用时。为此,我们采用被动声发射监测和主动超声波探测相结合的增强型三维成像技术,对包括初始速度模型、传感器排布、路径覆盖范围、事件的空间分布和定位误差等因素进行研究,共开展相关测试37组,获得了不同因素对成像精度的量化影响。测试结果表明该成像技术可有效应对复杂结构中的异常区域的精准探测,且在初始迭代参数优化后,异常区域的探测精度显著提高。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

参考文献

[ 1 ] Ma J, Dong LJ, Zhao GY, Li XB. Focal mechanism of mining-induced seismicity in fault zones: a case study of Yongshaba mine in China. Rock Mech Rock Eng 2019;52(9):3341–52. 链接1

[ 2 ] Feng GL, Feng XT, Chen BR, Xiao YX, Liu GF, Zhang W, et al. Characteristics of microseismicity during breakthrough in deep tunnels: case study of Jinping-II Hydropower Station in China. Int J Geomech 2020;20(2):04019163. 链接1

[ 3 ] Ma J, Dong LJ, Zhao GY, Li X. Discrimination of seismic sources in an underground mine using full waveform inversion. Int J Rock Mech Min Sci 2018;106:213–22. 链接1

[ 4 ] Dong LJ, Zou W, Li XB, Shu WW, Wang ZW. Collaborative localization method using analytical and iterative solutions for microseismic/acoustic emission sources in the rockmass structure for underground mining. Eng Fract Mech 2019;210:95–112. 链接1

[ 5 ] Ma J, Dong LJ, Zhao GY, Li XB. Ground motions induced by mining seismic events with different focal mechanisms. Int J Rock Mech Min Sci 2019;116:99–110. 链接1

[ 6 ] Ma J, Dong LJ, Zhao GY, Li XB. Qualitative method and case study for ground vibration of tunnels induced by fault-slip in underground mine. Rock Mech Rock Eng 2019;52(6):1887–901. 链接1

[ 7 ] Dong LJ, Zou W, Sun DY, Tong XJ, Li XB, Shu WW. Some developments and new insights for microseismic/acoustic emission source localization. Shock Vib 2019;2019:1–15. 链接1

[ 8 ] Dong LJ, Sun DY, Han GJ, Li XB, Hu QC, Shu L. Velocity-free localization of autonomous driverless vehicles in underground intelligent mines. IEEE Trans Veh Technol. In press. 链接1

[ 9 ] Dong LJ, Tong XJ, Li XB, Zhou J, Wang SF, Liu B. Some developments and new insights of environmental problems and deep mining strategy for cleaner production in mines. J Cleaner Prod 2019;210:1562–78. 链接1

[10] Feng GL, Feng XT, Chen BR, Xiao YX, Zhao ZN. Effects of structural planes on the microseismicity associated with rockburst development processes in deep tunnels of the Jinping-II Hydropower Station, China. Tunn Undergr Space Technol 2019;84:273–80. 链接1

[11] Etgen J, Gray SH, Zhang Y. An overview of depth imaging in exploration geophysics. Geophysics 2009;74(6):WCA5–17. 链接1

[12] Feng GL, Feng XT, Chen BR, Xiao YX, Yu Y. A microseismic method for dynamic warning of rockburst development processes in tunnels. Rock Mech Rock Eng 2015;48(5):2061–76. 链接1

[13] Hu QC, Dong LJ. Acoustic emission source location and experimental verification for two-dimensional irregular complex structure. IEEE Sens J 2020;20(5):2679–91. 链接1

[14] Virieux J, Operto S. An overview of full-waveform inversion in exploration geophysics. Geophysics 2009;74(6):WCC1–26. 链接1

[15] Yi CP, Nordlund E, Zhang P, Warema S, Shirzadegan S. Numerical modeling for a simulated rockburst experiment using LS-DYNA. Underground Space. In press. 链接1

[16] Otto R, Button EA, Bretterebner H, Schwab P. The application of TRT—true reflection tomography—at the unterwald tunnel. Felsbau 2002;20(2):51–6. 链接1

[17] Campbell G. Exploration geophysics of the Bushveld Complex in South Africa. Lead Edge 2011;30(6):622–38. 链接1

[18] Yi CP, Johansson D, Greberg J. Effects of in-situ stresses on the fracturing of rock by blasting. Comput Geotechnol 2018;104:321–30. 链接1

[19] Dong LJ, Hu QC, Tong XJ, Liu YF. Velocity-free MS/AE source location method for three-dimensional hole-containing structures. Engineering 2020;6 (7):827–34. 链接1

[20] Baizhanov B, Katsuki D, Tutuncu AN, Mese AI. Experimental investigation of coupled geomechanical, acoustic, and permeability characterization of Berea sandstone using a novel true triaxial assembly. Rock Mech Rock Eng 2019;52 (8):2491–503. 链接1

[21] Bruning T, Karakus M, Nguyen GD, Goodchild D. Experimental study on the damage evolution of brittle rock under triaxial confinement with full circumferential strain control. Rock Mech Rock Eng 2018;51(11):3321–41. 链接1

[22] Kim BC, Chen J, Kim JY. Relation between crack density and acoustic nonlinearity in thermally damaged sandstone. Int J Rock Mech Min Sci 2020;125:104171. 链接1

[23] Rawlinson N, Fichtner A, Sambridge M, Young MK. Chapter one—seismic tomography and the assessment of uncertainty. Adv Geophys 2014;55: 1–76. 链接1

[24] Aben FM, Brantut N, Mitchell TM, David EC. Rupture energetics in crustal rock from laboratory-scale seismic tomography. Geophys Res Lett 2019;46 (13):7337–44. 链接1

[25] Behnia A, Chai HK, Yorikawa M, Momoki S, Terazawa M, Shiotani T. Integrated non-destructive assessment of concrete structures under flexure by acoustic emission and travel time tomography. Constr Build Mater 2014;67(Pt B):202–15. 链接1

[26] Gupta IN. Seismic velocities in rock subjected to axial loading up to shear fracture. J Geophys Res 1973;78(29):6936–42. 链接1

[27] Jansen DP, Carlson SR, Young RP, Hutchins DA. Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in Lac du Bonnet granite. J Geophys Res Solid Earth 1993;98(B12):22231–43. 链接1

[28] Nishizawa O, Lei XL. A numerical study on finding an optimum model in velocity tomography by using the extended information criterion. Geophys Res Lett 1995;22(10):1313–6. 链接1

[29] Lei XL, Xue ZQ. Ultrasonic velocity and attenuation during CO2 injection into water-saturated porous sandstone: measurements using difference seismic tomography. Phys Earth Planet Inter 2009;176(3–4):224–34. 链接1

[30] Brantut N. Time-resolved tomography using acoustic emissions in the laboratory, and application to sandstone compaction. Geophys J Int 2018;213(3):2177–92. 链接1

相关研究