期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第1期 doi: 10.1016/j.eng.2020.06.022

化学链概念在共沸物分离中的应用

School of Chemical Engineering and Technology, Tianjin University & National Engineering Research Center of Distillation Technology & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300350, China

收稿日期: 2019-10-29 修回日期: 2020-06-26 录用日期: 2020-06-28 发布日期: 2020-11-19

下一篇 上一篇

摘要

为了生产高端化学品和资源回收而进行共沸物分离的必要性,促使人们对化学工业中新分离方法的开发进行了大量研究。本文基于化学链的概念,借助可逆反应辅助精馏技术,提出了一种绿色可持续的共沸物分离方法。化学链分离(CLS)方法的核心概念是选择一种既能与共沸物发生反应,又能通过逆反应进行循环利用的反应物,以闭合回路并实现共沸物分离。本文旨在从分离原理、反应物选择和案例分析(如烯烃、烷烃、芳烃和多元醇产品的分离)等的基础上,为CLS方法的基本理论和应用提供一个有益的见解。本文为产品精制和共沸体系分离过程中的化学分离工艺的过程的强化提供指导和参考,以促进化工行业的可持续发展。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Li H, Zhao Z, Xiouras C, Stefanidis GD, Li X, Gao X. Fundamentals and applications of microwave heating to chemicals separation processes. Renew Sustain Energy Rev 2019;114:109316. 链接1

[ 2 ] Graczová E, Šulgan B, Barabas S, Steltenpohl P. Methyl acetate–methanol mixture separation by extractive distillation: economic aspects. Front Chem Sci Eng 2018;12(4):670–82. 链接1

[ 3 ] Kulajanpeng K, Suriyapraphadilok U, Gani R. Systematic screening methodology and energy efficient design of ionic liquid-based separation processes. J Cleaner Prod 2016;111:93–107. 链接1

[ 4 ] Pavlenko AN, Zhukov VE, Pecherkin NI, Nazarov AD, Slesareva EY, Li X, et al. Efficiency of mixture separation in distillation columns with structured packings under different ways of dynamically controlled irrigation. J Eng Thermophys 2019;28(3):313–23. 链接1

[ 5 ] Li H, Meng Y, Shu C, Li X, Kiss AA, Gao X. Innovative reactive distillation process for the sustainable synthesis of natural benzaldehyde. ACS Sustainable Chem Eng 2018;6(11):14114–24. 链接1

[ 6 ] Zhu Z, Geng X, He W, Chen C, Wang Y, Gao J. Computer-aided screening of ionic liquids as entrainers for separating methyl acetate and methanol via extractive distillation. Ind Eng Chem Res 2018;57(29):9656–64. 链接1

[ 7 ] Bakhtiari O, Hashemi Safaee S. Industrial grade 1-butene/isobutane separation using supported liquid membranes. Chem Eng Res Des 2017;123:180–6. 链接1

[ 8 ] Brinkmann T, Lillepärg J, Notzke H, Pohlmann J, Shishatskiy S, Wind J, et al. Development of CO2 selective poly(ethylene oxide)-based membranes: from laboratory to pilot plant scale. Engineering 2017;3(4):485–93. 链接1

[ 9 ] Zhao T, Geng X, Qi P, Zhu Z, Gao J, Wang Y. Optimization of liquid–liquid extraction combined with either heterogeneous azeotropic distillation or extractive distillation processes to reduce energy consumption and carbon dioxide emissions. Chem Eng Res Des 2018;132:399–408. 链接1

[10] Cháfer A, de la Torre J, Loras S, Montón JB. Study of liquid–liquid extraction of ethanol + water azeotropic mixtures using two imidazolium-based ionic liquids. J Chem Thermodyn 2018;118:92–9. 链接1

[11] Bono A, Sarbatly R, Krishnaiah D, San PM, Yan FY. Effect of ultrasound on liquid phase adsorption of azeotropic and non-azeotropic mixture. Catal Today 2008;131(1-4):472–6. 链接1

[12] Alaerts L, Kirschhock CA, Maes M, van der Veen M, Finsy V, Depla A, et al. Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47. Angew Chem Int Ed 2007;46(23):4293–7. 链接1

[13] Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E. Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol). Polymer 2003;44(19):5681–9. 链接1

[14] Jin J, Du J, Xia Q, Liang Y, Han CC. Effect of mesophase separation on the crystallization behavior of olefin block copolymers. Macromolecules 2010;43 (24):10554–9. 链接1

[15] Lesage N, Sperandio M, Cabassud C. Study of a hybrid process: adsorption on activated carbon/membrane bioreactor for the treatment of an industrial wastewater. Chem Eng Process Process Intensif 2008;47(3):303–7. 链接1

[16] Guo A, Ban Y, Yang K, Yang W. Metal–organic framework-based mixed matrix membranes: synergetic effect of adsorption and diffusion for CO2/CH4 separation. J Membr Sci 2018;562:76–84. 链接1

[17] Baghel S, Cathcart H, O’Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci 2016;105(9):2527–44. 链接1

[18] Egorova KS, Gordeev EG, Ananikov VP. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev 2017;117(10):7132–89. 链接1

[19] Kiss AA, Suszwalak DPC. Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Sep Purif Technol 2012;86:70–8. 链接1

[20] Lei Z, Xi X, Dai C, Zhu J, Chen B. Extractive distillation with the mixture of ionic liquid and solid inorganic salt as entrainers. AIChE J 2014;60(8):2994–3004. 链接1

[21] Luyben WL. Comparison of flowsheets for THF/water separation using pressure-swing distillation. Comput Chem Eng 2018;115:407–11. 链接1

[22] Seiler M, Köhler D, Arlt W. Hyperbranched polymers: new selective solvents for extractive distillation and solvent extraction. Sep Purif Technol 2003;30 (2):179–97. 链接1

[23] Lei Z, Dai C, Zhu J, Chen B. Extractive distillation with ionic liquids: a review. AIChE J 2014;60(9):3312–29. 链接1

[24] Kossack S, Kraemer K, Gani R, Marquardt W. A systematic synthesis framework for extractive distillation processes. Chem Eng Res Des 2008;86(7):781–92. 链接1

[25] Li H, Wu Y, Li X, Gao X. State-of-the-art of advanced distillation technologies in China. Chem Eng Technol 2016;39(5):815–33. 链接1

[26] Zhao Y, Ma K, Bai W, Du D, Zhu Z, Wang Y, et al. Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol. Energy 2018;148:296–308. 链接1

[27] Liang S, Cao Y, Liu X, Li X, Zhao Y, Wang Y, et al. Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control. Chem Eng Res Des 2017;117:318–35. 链接1

[28] Li H, Huang W, Li X, Gao X. Application of the aldolization reaction in separating the mixture of ethylene glycol and 1,2-butanediol: thermodynamics and new separation process. Ind Eng Chem Res 2016;55 (37):9994–10003. 链接1

[29] Ch VL, Ravuru U, Kotra V, Bankupalli S, Prasad RBN. Novel route for recovery of glycerol from aqueous solutions by reversible reactions. Int J Chem React Eng 2009;7(1):1–16. 链接1

[30] Tink RR, Neish AC. Extraction of polyhydroxy compounds from dilute aqueous solutions by cyclic acetal formation. I. An investigation of the scope of the process. Can J Technol 1951;29:243–9. 链接1

[31] Adánez J, de Diego LF, García-Labiano F, Gayán P, Abad A, Palacios JM. Selection of oxygen carriers for chemical-looping combustion. Energy Fuels 2004;18 (2):371–7. 链接1

[32] Ishida M, Jin H. A new advanced power-generation system using chemicallooping combustion. Energy 1994;19(4):415–22. 链接1

[33] Fan LS, Li F. Chemical looping technology and its fossil energy conversion applications. Ind Eng Chem Res 2010;49(21):10200–11. 链接1

[34] Hsieh TL, Xu D, Zhang Y, Nadgouda S, Wang D, Chung C, et al. 250 kWth high pressure pilot demonstration of the syngas chemical looping system for high purity H2 production with CO2 capture. Appl Energy 2018;230:1660–72. 链接1

[35] He Y, Zhu L, Li L, Rao D. Life-cycle assessment of SNG and power generation: the role of implement of chemical looping combustion for carbon capture. Energy 2019;172:777–86. 链接1

[36] Ubando AT, Chen WH, Ashokkumar V, Chang JS. Iron oxide reduction by torrefied microalgae for CO2 capture and abatement in chemical-looping combustion. Energy 2019;186:115903. 链接1

[37] Clark JA, Santiso EE. Carbon sequestration through co2 foam-enhanced oil recovery: a green chemistry perspective. Engineering 2018;4(3):336–42. 链接1

[38] Fan LS, Zeng L, Wang W, Luo S. Chemical looping processes for CO2 capture and carbonaceous fuel conversion-prospect and opportunity. Energy Environ Sci 2012;5(6):7254–80. 链接1

[39] Senkus M. Recovery of 2,3-butanediol produced by fermentation. Ind Eng Chem 1946;38(9):913–6. 链接1

[40] Chopade SP, Sharma MM. Acetalization of ethylene glycol with formaldehyde using cation-exchange resins as catalysts: batch versus reactive distillation. React Funct Polym 1997;34(1):37–45. 链接1

[41] Saha B, Chopade SP, Mahajani SM. Recovery of dilute acetic acid through esterification in a reactive distillation column. Catal Today 2000;60(1–2):147–57. 链接1

[42] Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. Designing for a green chemistry future. Science 2020;367(6476):397–400. 链接1

[43] Kiss AA, Jobson M, Gao X. Reactive distillation: stepping up to the next level of process intensification. Ind Eng Chem Res 2019;58(15):5909–18. 链接1

[44] Saito S, Michishita T, Maeda S. Separation of meta- and para-xylene mixture by distillation accompanied by chemical reactions. J Chem Eng Jpn 1971;4(1): 37–43. 链接1

[45] Moldenhauer P, Rydén M, Mattisson T, Lyngfelt A. Chemical-looping combustion and chemical-looping with oxygen uncoupling of kerosene with Mn- and Cu-based oxygen carriers in a circulating fluidized-bed 300W laboratory reactor. Fuel Process Technol 2012;104:378–89. 链接1

[46] Bayham S, McGiveron O, Tong A, Chung E, Kathe M, Wang D, et al. Parametric and dynamic studies of an iron-based 25-kWth coal direct chemical looping unit using sub-bituminous coal. Appl Energy 2015;145:354–63. 链接1

[47] Adánez J, Gayán P, Celaya J, de Diego LF, García-Labiano F, Abad A. Chemical looping combustion in a 10 kWth prototype using a CuO/Al2O3 oxygen carrier: effect of operating conditions on methane combustion. Ind Eng Chem Res 2006;45(17):6075–80. 链接1

[48] Li X, Wang R, Na J, Li H, Gao X. Reversible reaction-assisted intensification process for separating the azeotropic mixture of ethanediol and 1,2- butanediol: reactants screening. Ind Eng Chem Res 2018;57(2):710–7. 链接1

[49] Sundmacher K, Kienle A, editors. Reactive distillation: status and future directions. Hoboken: John Wiley & Sons; 2006. 链接1

[50] Collin G, Höke H. Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH; 2001. 链接1

[51] Zhao Y, Xu Y, Wu D, Wei W, Sun Y, Al-Arifi ASN, et al. Hydrophobic mesoporous silica applied in GC separation of hexene isomers. J Sol-Gel Sci Technol 2010;56(1):93–8. 链接1

[52] Li R, Xing H, Yang Q, Zhao Xu, Su B, Bao Z, et al. Selective extraction of 1-hexene against n-hexane in ionic liquids with or without silver salt. Ind Eng Chem Res 2012;51(25):8588–97. 链接1

[53] Castellanos-Beltran IJ, Assima GP, Lavoie JM. Effect of temperature in the conversion of methanol to olefins (MTO) using an extruded SAPO-34 catalyst. Front Chem Sci Eng 2018;12(2):226–38. 链接1

[54] Sadrameli SM, Green AES. Systematics and modeling representations of naphtha thermal cracking for olefin production. J Anal Appl Pyrol 2005;73 (2):305–13. 链接1

[55] Li X, Song F. Advances in olefin production technology by catalytic cracking. Petrochem Technol 2002;31(7):569–73. Chinese. 链接1

[56] Wentink AE, Kuipers NJM, de Haan AB, Scholtz J, Mulder H. Synthesis and evaluation of metal-ligand complexes for selective olefin solubilization in reactive solvents. Ind Eng Chem Res 2005;44(13):4726–36. 链接1

[57] Wentink AE, Kuipers NJM, de Haan AB, Scholtz J, Mulder H. Olefin isomer separation by reactive extractive distillation: modelling of vapour–liquid equilibria and conceptual design for 1-hexene purification. Chem Eng Process Process 2007;46(9):800–9. 链接1

[58] Kuipers NJM, Wentink AE, de Haan AB, Scholtz J, Mulder H. Functionalized solvents for olefin isomer purification by reactive extractive distillation. Chem Eng Res Des 2007;85(1):88–99. 链接1

[59] Wentink AE, Kockmann D, Kuipers NJM, de Haan AB, Scholtz J, Mulder H. Effect of C6-olefin isomers on p-complexation for purification of 1-hexene by reactive extractive distillation. Sep Purif Technol 2005;43(2):149–62. 链接1

[60] Lu L, Orr JD, inventors; Eisai Co., Ltd., assignee. Separation of olefinic isomers. United States patent US 6861512. 2005 Mar 1.

[61] De Klerk A. Etherification of C6 Fischer-Tropsch material for linear a-olefin recovery. Ind Eng Chem Res 2004;43(20):6349–54. 链接1

[62] Song F, Yu Y, Chen J. Separation of C6-olefin isomers in reactive extractants. Tinshhua Sci Technol 2008;13(5):730–5. 链接1

[63] Ghanta M, Fahey DR, Busch DH, Subramaniam B. Comparative economic and environmental assessments of H2O2-based and tertiary butyl hydroperoxidebased propylene oxide technologies. ACS Sustainable Chem Eng 2013;1 (2):268–77. 链接1

[64] Schrans S, de Wolf S, Baur R. Dynamic simulation of reactive distillation: an MTBE case study. Comput Chem Eng 1996;20:S1619–24. 链接1

[65] Norkobilov A, Gorri D, Ortiz I. Comparative study of conventional, reactivedistillation and pervaporation integrated hybrid process for ethyl tert-butyl ether production. Chem Eng Process Process Intensif 2017;122:434–46. 链接1

[66] Gao X, Wang F, Li H, Li X. Heat-integrated reactive distillation process for TAME synthesis. Sep Purif Technol 2014;132:468–78. 链接1

[67] Kolah AK, Qi ZW, Mahajani SM. Dimenzed isobutene: an alternative to MTBE. Chem Innovation 2001;31(3):15–21. 链接1

[68] Kamath RS, Qi ZW, Sundmacher K, Aghalayam P, Mahajani SM. Process analysis for dimerization of isobutene by reactive distillation. Ind Eng Chem Res 2006;45(5):1575–82. 链接1

[69] Talwalkar S, Mankar S, Katariya A, Aghalayam P, Ivanova M, Sundmacher K, et al. Selectivity engineering with reactive distillation for dimerization of C4 olefins: experimental and theoretical studies. Ind Eng Chem Res 2007;46 (10):3024–34. 链接1

[70] Azimi SS, Kalbasi M. Three-phase modeling of dehydrogenation of isobutane to isobutene in a fluidized bed reactor: effect of operating conditions on the energy consumption. Energy 2018;149:250–61. 链接1

[71] Gehre M, Guo Z, Rothenberg G, Tanase S. Sustainable separations of C4- hydrocarbons by using microporous materials. ChemSusChem 2017;10(20): 3947–63. 链接1

[72] Stein E, Kienle A, Sundmacher K. Separation using coupled reactive distillation columns. Chem Eng 2000;107(13):68. 链接1

[73] Sneesby MG, Tadé MO, Smith TN. Multiplicity and pseudo-multiplicity in MTBE and ETBE reactive distillation. Chem Eng Res Des 1998;76(4):525–31. 链接1

[74] Huang K, Wang SJ. Design and control of a methyl tertiary butyl ether (MTBE) decomposition reactive distillation column. Ind Eng Chem Res 2007;46 (8):2508–19. 链接1

[75] Johnson R, Pankow J, Bender D, Price C, Zogorski J. Peer reviewed: MTBE—to what extent will past releases contaminate community water supply wells? Environ Sci Technol 2000;34(9):210A–7A. 链接1

[76] Mohameed HA, Jdayil BA, Takrouri K. Separation of para-xylene from xylene mixture via crystallization. Chem Eng Process Process Intensif 2007;46 (1):25–36. 链接1

[77] Yang H, Hu Y. Separation of para-xylene and meta-xylene by extraction process using aqueous cyclodextrins solution. Chem Eng Process Process Intensif 2017;116:114–20. 链接1

[78] Wytcherley RW, McCandless FP. The separation of meta- and para-xylene by pervaporation in the presence of CBr4, a selective feed-complexing agent. J Membr Sci 1992;67(1):67–74. 链接1

[79] Zlatkis A, O’Brien L, Scholly PR. Gas chromatographic separation of meta- and para-xylenes in aromatic mixtures. Nature 1958;181(4626):1794. 链接1

[80] Yin A, Guo X, Dai WL, Li H, Fan K. Highly active and selective copper-containing HMS catalyst in the hydrogenation of dimethyl oxalate to ethylene glycol. Appl Catal A 2008;349(1-2):91–9. 链接1

[81] Wen C, Cui Y, Chen Xi, Zong B, DaiWL. Reaction temperature controlled selective hydrogenation of dimethyl oxalate to methyl glycolate and ethylene glycol over copper-hydroxyapatite catalysts. Appl Catal B 2015;162:483–93. 链接1

[82] Chen LF, Guo PJ, Qiao MH, Yan SR, Li HX, Shen W, et al. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol. J Catal 2008;257(1):172–80. 链接1

[83] Pang J, Zheng M, Sun R, Wang A, Wang X, Zhang T. Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. Green Chem 2016;18 (2):342–59. 链接1

[84] Delidovich I, Hausoul PJC, Deng Li, Pfützenreuter R, Rose M, Palkovits R. Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 2016;116(3):1540–99. 链接1

[85] Ai S, Zheng M, Jiang Yu, Yang X, Li X, Pang J, et al. Selective removal of 1,2- propanediol and 1,2-butanediol from bio-ethylene glycol by catalytic reaction. AIChE J 2017;63(9):4032–42. 链接1

[86] Yang Z, Xia S, Shang Q, Yan F, Ma P. Isobaric vapor–liquid equilibrium for the binary system (ethane-1,2-diol + butan-1,2-diol) at (20, 30, and 40) kPa. J Chem Eng Data 2014;59(3):825–31. 链接1

[87] Zhu L, Yan J, Xiao W. Measuring and correlating the vapor liquid equilibria of the binary system ethylene glycol and 1,2-butanediol. Chem Eng 2012;40:35. 链接1

[88] Zhu LT, Yan JM, Xiao WD. Determination and correlation of VLE data for ethylene glycol and 1,2-butanediol system. Chem Eng 2012;40(7):34–7. Chinese. 链接1

[89] Li H, Wu C, Zhang Q, Li X, Gao X. Synthesis of 1,3-dioxolane from aqueous formaldehyde solution and ethylene glycol: kinetics and reactive distillation. Ind Eng Chem Res 2019;58(17):7025–36. 链接1

[90] Berg L, inventor; Berg L, assignee. Recovery of ethylene glycol from butanediol isomers by azeotropic distillation. United States patent US 4966658. 1990 Oct 30.

[91] Li H, Zhao Z, Qin J, Wang R, Li X, Gao X. Reversible reaction-assisted intensification process for separating the azeotropic mixture of ethanediol and 1,2-butanediol: vapor–liquid equilibrium and economic evaluation. Ind Eng Chem Res 2018;57(14):5083–92. 链接1

[92] Huang W, Li H, Wang R, Li X, Gao X. Application of the aldolization reaction in separating the mixture of ethylene glycol and 1,2-butanediol: kinetics and reactive distillation. Chem Eng Process 2017;120:173–83. 链接1

[93] Li X, Wang R, Yan Y, Zhao R, Li H, Gao X. Ethylene glycol recovery from 2-ethyl1,3-dioxolane hydrolysis via reactive distillation: pilot-scale experiments and process analysis. Ind Eng Chem Res 2019;58(45):20746–57. 链接1

[94] Wang R, Li X, Na J, Wu Y, Zhao R, Yan Y, et al. Reversible reaction-assisted intensification process for separating ethanediol and 1,2-butanediol: competitive kinetic study and conceptual design. Sep Purif Technol 2020;237:116323. 链接1

相关研究