期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第16卷 第9期 doi: 10.1016/j.eng.2020.06.033

葡萄糖辅助构建用于脱盐的高稳定超薄纳米多孔膜

a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage & State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
b MOE Key Laboratory of Materials Processing and Molding & National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China

收稿日期: 2020-03-10 修回日期: 2021-05-21 录用日期: 2021-06-08 发布日期: 2022-07-04

下一篇 上一篇

摘要

尽管纳米多孔膜在海水淡化中引起了人们的广泛关注,但构建具有较高截留率和高渗透性的纳米多孔膜以实现高效的海水淡化过程仍然具有挑战性。本研究中,高渗透性的纳米多孔膜在葡萄糖和多巴胺的多种功能的辅助下,通过与1,3,5-苯三甲酰三氯(TMC)的界面反应来制备。葡萄糖的小分子(0.66 nm)具有高亲水性,可以扩散到膜内部进行有效反应,确保结构完整性。本文中新型超薄(44 nm)纳滤(NF)膜在5 bar(1 bar = 105 Pa)的压力下具有超高的Na2SO4通量及优异的 Na2SO4(66.5 L∙m−2∙h−1, 97.3%)和MgSO4(63.0 L∙m−2∙h−1, 92.1%)截留率,其性能远优于基于天然产物的NF膜的性能。该膜表现出优异的长期稳定性,以及卓越的酸碱稳定性和抗污染能力。这项基于膜材料和结构的设计为超越现有膜材料分离膜打开了新的大门。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Wang Z, Wang Z, Lin S, Jin H, Gao S, Zhu Y, et al. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nat Commun 2018;9(1):2004. 链接1

[ 2 ] Jimenez-Solomon MF, Song Q, Jelfs KE, Munoz-Ibanez M, Livingston AG. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat Mater 2016;15(7):760‒7. 链接1

[ 3 ] Tan Z, Chen S, Peng X, Zhang L, Gao C. Polyamide membranes with nanoscale Turing structures for water purification. Science 2018;360(6388):518‒21. 链接1

[ 4 ] Thakur VK, Voicu SI. Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr Polym 2016;146:148‒65. 链接1

[ 5 ] Shen L, Cheng C, Yu X, Yang Y, Wang X, Zhu M, et al. Low pressure UV-cured CS-PEO-PTEGDMA/PAN thin film nanofibrous composite nanofiltration membranes for anionic dye separation. J Mater Chem A 2016;4(40):15575‒88. 链接1

[ 6 ] Puspasari T, Pradeep N, Peinemann KV. Crosslinked cellulose thin film composite nanofiltration membranes with zero salt rejection. J Membr Sci 2015;491:132‒7. 链接1

[ 7 ] Miao J, Lin H, Wang W, Zhang LC. Amphoteric composite membranes for nanofiltration prepared from sulfated chitosan crosslinked with hexamethylene diisocyanate. Chem Eng J 2013;234:132‒9. 链接1

[ 8 ] Guo J, Zhang Q, Cai Z, Zhao K. Preparation and dye filtration property of electrospun polyhydroxybutyrate‒calcium alginate/carbon nanotubes composite nanofibrous filtration membrane. Separ Purif Tech 2016;161:69‒79. 链接1

[ 9 ] Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 2014;114(9):5057‒115. 链接1

[10] Zhao J, Su Y, He X, Zhao X, Li Y, Zhang R, et al. Dopamine composite nanofiltration membranes prepared by self-polymerization and interfacial polymerization. J Membr Sci 2014;465:41‒8. 链接1

[11] Li M, Xu J, Chang CY, Feng C, Zhang L, Tang Y, et al. Bioinspired fabrication of composite nanofiltration membrane based on the formation of DA/PEI layer followed by cross-linking. J Membr Sci 2014;459:62‒71. 链接1

[12] Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007;318(5849):426‒30. 链接1

[13] Li Y, Su Y, Zhao X, He X, Zhang R, Zhao J, et al. Antifouling, high-flux nanofiltration membranes enabled by dual functional polydopamine. ACS Appl Mater Interfaces 2014;6(8):5548‒57. 链接1

[14] Wang ZX, Lau CH, Zhang NQ, Bai YP, Shao L. Mussel-inspired tailoring of membrane wettability for harsh water treatment. J Mater Chem A 2015;3(6):2650‒7. 链接1

[15] Zhang YQ, Ma J, Shao L. Ultra-thin trinity coating enabled by competitive reactions for unparalleled molecular separation. J Mater Chem A 2020;8(10):5078‒85. 链接1

[16] Xu YC, Cheng XQ, Long J, Shao L. A novel monoamine modification strategy toward high-performance organic solvent nanofiltration (OSN) membrane for sustainable molecular separations. J Membr Sci 2016;497:77‒89. 链接1

[17] Zhang N, Jiang B, Zhang L, Huang Z, Sun Y, Zong Y, et al. Low-pressure electroneutral loose nanofiltration membranes with polyphenol-inspired coatings for effective dye/divalent salt separation. Chem Eng J 2019;‍359:1442‒52. 链接1

[18] Zhang Y, Sun H, Sadam H, Liu Y, Shao L. Supramolecular chemistry assisted construction of ultra-stable solvent-resistant membranes for angstrom-sized molecular separation. Chem Eng J 2019;371:535‒43. 链接1

[19] Zhang T, Fu RY, Wang KP, Gao YW, Li HR, Wang XM, et al. Effect of synthesis conditions on the non-uniformity of nanofiltration membrane pore size distribution. J Membr Sci 2022;647:120304. 链接1

[20] Otero JA, Mazarrasa O, Villasante J, Silva V, Prádanos P, Calvo JI, et al. Three independent ways to obtain information on pore size distributions of nanofiltration membranes. J Membr Sci 2008;309(1‒2):17‒27. 链接1

[21] Tang A, Feng W, Fang C, Li J, Yang X, Zhu L. Polyarylester thin films with narrowed pore size distribution via metal-phenolic network modulated interfacial polymerization for precise separation. J Membr Sci 2022;‍646:120263. 链接1

[22] Liu Y, Gao J, Ge Y, Yu S, Liu M, Gao C. A combined interfacial polymerization and in-situ sol-gel strategy to construct composite nanofiltration membrane with improved pore size distribution and anti-protein-fouling property. J Membr Sci 2021;623:119097. 链接1

[23] Cao X, Luo J, Woodley JM, Wan Y. Mussel-inspired co-deposition to enhance bisphenol A removal in a bifacial enzymatic membrane reactor. Chem Eng J 2018;336:315‒24. 链接1

[24] Wang T, Qiblawey H, Sivaniah E, Mohammadian A. Novel methodology for facile fabrication of nanofiltration membranes based on nucleophilic nature of polydopamine. J Membr Sci 2016;511:65‒75. 链接1

[25] Li W, Bian C, Fu C, Zhou A, Shi C, Zhang J. A poly(amide-co-ester) nanofiltration membrane using monomers of glucose and trimesoyl chloride. J Membr Sci 2016;504:185‒95. 链接1

[26] Amini M, Arami M, Mahmoodi NM, Akbari A. Dye removal from colored textile wastewater using acrylic grafted nanomembrane. Desalination 2011;267(1):107‒13. 链接1

[27] Hong G, Shen L, Wang M, Yang Y, Wang X, Zhu M, et al. Nanofibrous polydopamine complex membranes for adsorption of lanthanum (III) ions. Chem Eng J 2014;244:307‒16. 链接1

[28] Kwon YN, Hong S, Choi H, Tak T. Surface modification of a polyamide reverse osmosis membrane for chlorine resistance improvement. J Membr Sci 2012;415‒416:192‒8.

[29] Cheng XQ, Zhang C, Wang ZX, Shao L. Tailoring nanofiltration membrane performance for highly-efficient antibiotics removal by mussel-inspired modification. J Membr Sci 2016;499:326‒34. 链接1

[30] Elizalde-González MP, García-Díaz LE. Application of a Taguchi L16 orthogonal array for optimizing the removal of Acid Orange 8 using carbon with a low specific surface area. Chem Eng J 2010;163(1‒2):55‒61. 链接1

[31] Gevers LEM, Meyen G, De Smet K, Van De Velde P, Du Prez F, Vankelecom IFJ, et al. Physico-chemical interpretation of the SRNF transport mechanism for solutes through dense silicone membranes. J Membr Sci 2006;274(1‒2):173‒82.

[32] Thong Z, Han G, Cui Y, Gao J, Chung TS, Chan SY, et al. Novel nanofiltration membranes consisting of a sulfonated pentablock copolymer rejection layer for heavy metal removal. Environ Sci Technol 2014;48(23):13880‒7. 链接1

[33] Wu D, Yu S, Lawless D, Feng X. Thin film composite nanofiltration membranes fabricated from polymeric amine polyethylenimine imbedded with monomeric amine piperazine for enhanced salt separations. React Funct Polym 2015;86:168‒83. 链接1

[34] Wu C, Liu S, Wang Z, Zhang J, Wang X, Lu X, et al. Nanofiltration membranes with dually charged composite layer exhibiting super-high multivalent-salt rejection. J Membr Sci 2016;517:64‒72. 链接1

[35] Fan H, Gu J, Meng H, Knebel A, Caro J. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration. Angew Chem Int Ed Engl 2018;57(15):4083‒7. 链接1

[36] Chen H, Wu C, Jia Y, Wang X, Lu X. Comparison of three membrane distillation configurations and seawater desalination by vacuum membrane distillation. Desalination Water Treat 2011;28(1‒3):321‒7. 链接1

[37] Du Y, Qiu WZ, Lv Y, Wu J, Xu ZK. Nanofiltration membranes with narrow pore size distribution via contra-diffusion-induced mussel-inspired chemistry. ACS Appl Mater Interfaces 2016;8(43):29696‒704. 链接1

[38] Han J, Gao X, Liu Y, Wang H, Chen Y. Distributions and transport of typical contaminants in different urban stormwater runoff under the effect of drainage systems. Desalination Water Treat 2014;52(7‒9):1455‒61.

[39] Wang J, Gao X, Wang J, Wei Y, Li Z, Gao C. O-Carboxymethyl-chitosan nanofiltration membrane surface functionalized with graphene oxide nanosheets for enhanced desalting properties. ACS Appl Mater Interfaces 2015;7(7):4381‒9. 链接1

[40] Wu M, Yuan J, Wu H, Su Y, Yang H, You X, et al. Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability. J Membr Sci 2019;576:131‒41. 链接1

[41] Zhang R, Su Y, Zhao X, Li Y, Zhao J, Jiang Z. A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine). J Membr Sci 2014;470:9‒17. 链接1

[42] Yang X, Yan L, Ma J, Bai Y, Shao L. Bioadhesion-inspired surface engineering constructing robust, hydrophilic membranes for highly-efficient wastewater remediation. J Membr Sci 2019;591:117353. 链接1

[43] Yang X, Yan L, Ran F, Huang Y, Pan D, Bai Y, et al. Mussel-/diatom-inspired silicified membrane for high-efficiency water remediation. J Membr Sci 2020;597:117753. 链接1

[44] Li P, Wang Z, Yang LB, Zhao S, Song P, Khan B. A novel loose-NF membrane based on the phosphorylation and cross-linking of polyethyleneimine layer on porous PAN UF membranes. J Membr Sci 2018;555:56‒68. 链接1

[45] Tekinalp Ö, Alsoy AS. Development of high flux nanofiltration membranes through single bilayer polyethyleneimine/alginate deposition. J Colloid Interface Sci 2019;537:215‒27. 链接1

相关研究