期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第10期 doi: 10.1016/j.eng.2020.07.014

新型冠状病毒HCoV-19 S蛋白与人ACE2蛋白表面糖链和独特翻译后修饰的质谱分析

a State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310011, China
b Department of Biophysics & Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou 310011, China

收稿日期: 2020-05-12 修回日期: 2020-06-22 录用日期: 2020-07-05 发布日期: 2020-08-30

下一篇 上一篇

摘要

当下新型冠状病毒肺炎(COVID-19)的国际大流行促使全球科学家努力尝试揭秘新冠病毒HCoV-19的生物学特性。质谱分析(MS)发现,在HCoV-19 S蛋白的21个潜在糖基化修饰位点中,有20个位点完全被N-糖链占据,其糖型以低聚甘露糖为主。人血管紧张素转换酶2(hACE2)的7个糖基化位点完全被复合型N-糖链占据。然而,糖基化修饰并不能直接影响HCoV-19 S蛋白与hACE2之间的结合亲和力。另外,我们还发现了S蛋白和hACE2的多个甲基化修饰位点,以及hACE2的多个羟脯氨酸修饰位点。通过在最近发表的冷冻电镜(cryo-EM)结构的基础上加入N-糖链和蛋白质翻译后修饰(PTM),我们构建了HCoV-19 S蛋白和hACE2的精细结构模型。本研究揭示的HCoV-19 S蛋白和hACE2的PTM及糖基化图谱为研究病毒的宿主黏附、免疫反应,以及相关药物和疫苗的研发提供了更多的蛋白质结构细节。

补充材料

图片

图1

图2

图3

图4

参考文献

[ 1 ] Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020;579:265–9. 链接1

[ 2 ] Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID19 in real time. Lancet Infect Dis 2020;20(5):533–4. 链接1

[ 3 ] Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270–3. 链接1

[ 4 ] Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708–20. 链接1

[ 5 ] Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395(10229):1054–62. 链接1

[ 6 ] Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323(11):1061–9. 链接1

[ 7 ] Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol 2020;30(7):1346–51. 链接1

[ 8 ] Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV). Cell Host Microbe 2020;27:325–8. 链接1

[ 9 ] Xu Y. Unveiling the origin and transmission of 2019-nCoV. Trends Microbiol 2020;28(4):239–40. 链接1

[10] Zhang YZ, Holmes EC. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell 2020;181(2):223–7. 链接1

[11] Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020;94(7):e00127–220. 链接1

[12] Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181(2):271–80.e8. 链接1

[13] Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020;181 (2):281–92.e6. 链接1

[14] Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367(6483):1260–3. 链接1

[15] Fukushi M, Yoshinaka Y, Matsuoka Y, Hatakeyama S, Ishizaka Y, Kirikae T, et al. Monitoring of S protein maturation in the endoplasmic reticulum by calnexin is important for the infectivity of severe acute respiratory syndrome coronavirus. J Virol 2012;86(21):11745–53. 链接1

[16] de Groot RJ. Structure, function and evolution of the hemagglutinin-esterase proteins of corona- and toroviruses. Glycoconj J 2006;23(1–2):59–72. 链接1

[17] Raman R, Tharakaraman K, Sasisekharan V, Sasisekharan R. Glycan-protein interactions in viral pathogenesis. Curr Opin Struct Biol 2016;40:153–62. 链接1

[18] Chang D, Zaia J. Why glycosylation matters in building a better flu vaccine. Mol Cell Proteomics 2019;18(12):2348–58. 链接1

[19] Li W, Hulswit RJG, Widjaja I, Raj VS, McBride R, Peng W, et al. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. PNAS 2017;114(40):E8508–17. 链接1

[20] Parsons LM, Bouwman KM, Azurmendi H, de Vries RP, Cipollo JF, Verheije MH. Glycosylation of the viral attachment protein of avian coronavirus is essential for host cell and receptor binding. J Biol Chem 2019;294:7797–809. 链接1

[21] Shih YP, Chen CY, Liu SJ, Chen KH, Lee YM, Chao YC, et al. Identifying epitopes responsible for neutralizing antibody and DC-SIGN binding on the spike glycoprotein of the severe acute respiratory syndrome coronavirus. J Virol 2006;80(21):10315–24. 链接1

[22] York IA, Stevens J, Alymova IV. Influenza virus N-linked glycosylation and innate immunity. Biosci Rep 2018;39(1):BSR20171505. 链接1

[23] Zheng J, Yamada Y, Fung TS, Huang M, Chia R, Liu DX. Identification of N-linked glycosylation sites in the spike protein and their functional impact on the replication and infectivity of coronavirus infectious bronchitis virus in cell culture. Virology 2018;513:65–74. 链接1

[24] Zhou Y, Lu K, Pfefferle S, Bertram S, Glowacka I, Drosten C, et al. A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms. J Virol 2010;84(17):8753–64. 链接1

[25] Han DP, Lohani M, Cho MW. Specific asparagine-linked glycosylation sites are critical for DC-SIGN- and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry. J Virol 2007;81(21):12029–39. 链接1

[26] Jeffers SA, Tusell SM, Gillim-Ross L, Hemmila EM, Achenbach JE, Babcock GJ, et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. PNAS 2004;101(44):15748–53. 链接1

[27] Zheng L, Li H, Fu L, Liu S, Yan Q, Leng SX. Blocking cellular N-glycosylation suppresses human cytomegalovirus entry in human fibroblasts. Microb Pathog 2020;138:103776. 链接1

[28] Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005;2:69. 链接1

[29] Chen WH, Du L, Chag SM, Ma C, Tricoche N, Tao X, et al. Yeast-expressed recombinant protein of the receptor-binding domain in SARS-CoV spike protein with deglycosylated forms as a SARS vaccine candidate. Hum Vaccines Immunother 2014;10(3):648–58. 链接1

[30] Kumar S, Maurya VK, Prasad AK, Bhatt MLB, Saxena SK. Structural, glycosylation and antigenic variation between 2019 novel coronavirus (2019-nCoV) and SARS coronavirus (SARS-CoV). VirusDisease 2020;31:13–21. 链接1

[31] Sun Z, Liu X, Jiang J, Huang H, Wang J, Wu D, et al. Toward biomarker development in large clinical cohorts: an integrated high-throughput 96-wellplate-based sample preparation workflow for versatile downstream proteomic analyses. Anal Chem 2016;88(17):8518–25. 链接1

[32] Liu MQ, Zeng WF, Fang P, Cao WQ, Liu C, Yan GQ, et al. pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification. Nat Commun 2017;8:438. 链接1

[33] Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr 2010;D66:486–501. 链接1

[34] Bailey UM, Jamaluddin MF, Schulz BL. Analysis of congenital disorder of glycosylation-Id in a yeast model system shows diverse site-specific underglycosylation of glycoproteins. J Proteome Res 2012;11:5376–83. 链接1

[35] Shajahan A, Supekar NT, Gleinich AS, Azadi P. Deducing the N- and Oglycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology 2020;30(12):981–8.

[36] Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science 2020;369(6501):330–3. 链接1

[37] Krokhin O, Li Y, Andonov A, Feldmann H, Flick R, Jones S, et al. Mass spectrometric characterization of proteins from the SARS virus: a preliminary report. Mol Cell Proteomics 2003;2(5):346–56. 链接1

[38] Ying W, Hao Y, Zhang Y, Peng W, Qin E, Cai Y, et al. Proteomic analysis on structural proteins of severe acute respiratory syndrome coronavirus. Proteomics 2004;4(2):492–504. 链接1

[39] Song HC, Seo MY, Stadler K, Yoo BJ, Choo QL, Coates SR, et al. Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein. J Virol 2004;78 (19):10328–35. 链接1

[40] Watanabe Y, Bowden TA, Wilson IA, Crispin M. Exploitation of glycosylation in enveloped virus pathobiology. Biochim Biophys Acta Gen Subj 2019;1863 (10):1480–97. 链接1

[41] Feldmann H, Nichol ST, Klenk HD, Peters CJ, Sanchez A. Characterization of filoviruses based on differences in structure and antigenicity of the virion glycoprotein. Virology 1994;199(2):469–73. 链接1

[42] Ritchie G, Harvey DJ, Feldmann F, Stroeher U, Feldmann H, Royle L, et al. Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein. Virology 2010;399(2):257–69. 链接1

[43] Yang TJ, Chang YC, Ko TP, Draczkowski P, Chien YC, Chang YC, et al. Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflaging glycans. PNAS 2020;117(3):1438–46. 链接1

[44] Vigerust DJ, Shepherd VL. Virus glycosylation: role in virulence and immune interactions. Trends Microbiol 2007;15(5):211–8. 链接1

[45] Biswas A, Bhattacharjee U, Chakrabarti AK, Tewari DN, Banu H, Dutta S. Emergence of novel coronavirus and COVID-19: whether to stay or die out? Crit Rev Microbiol 2020;46(2):182–93. 链接1

[46] Robinson BS, Arthur CM, Evavold B, Roback E, Kamili NA, Stowell CS, et al. The sweet-side of leukocytes: galectins as master regulators of neutrophil function. Front Immunol 2019;53(6):925–35. 链接1

[47] Wang WH, Lin CY, Chang MR, Urbina AN, Assavalapsakul W, Thitithanyanont A, et al. The role of galectins in virus infection—a systemic literature review. J Microbiol Immunol Infect 2019;53(6):925–35. 链接1

[48] Cheng Y, Cheng G, Chui CH, Lau FY, Chan PK, Ng MH, et al. ABO blood group and susceptibility to severe acute respiratory syndrome. JAMA 2005;293 (12):1450–1. 链接1

[49] Zhao J, Yang Y, Huang H, Li D, Gu D, Lu X, et al. Relationship between the ABO blood group and the COVID-19 susceptibility. Clin Infect Dis 2020;73(2):328– 31.

[50] Guillon P, Clément M, Sébille V, Rivain JG, Chou CF, Ruvoën-Clouet N, et al. Inhibition of the interaction between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology 2008;18 (12):1085–93. 链接1

[51] Zhao X, Guo F, Comunale MA, Mehta A, Sehgal M, Jain P, et al. Inhibition of endoplasmic reticulum-resident glucosidases impairs severe acute respiratory syndrome coronavirus and human coronavirus NL63 spike protein-mediated entry by altering the glycan processing of angiotensin I-converting enzyme 2. Antimicrob Agents Chemother 2015;59(1):206–16. 链接1

[52] Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery 2020;6:16. 链接1

相关研究