期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第12期 doi: 10.1016/j.eng.2020.07.020

高层建筑抗风智能幕墙

NatHaz Modeling Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA

收稿日期: 2020-01-16 修回日期: 2020-06-18 录用日期: 2020-07-29 发布日期: 2020-09-30

下一篇 上一篇

摘要

世界各地城市高层建筑的蓬勃发展使人们对其抗风性能提出了新要求。这涉及选择建筑外形使其风荷载最小化和有效传递荷载的结构拓扑形式。现行方法通常是在设计中寻找最优外形,但是会将其限定在静态或固定的建筑形式下。以台北101和哈利法塔的外形设计为例,气动外形修正通过修改建筑物的外观设计在减小风荷载和风致建筑物响应方面有很好的应用前景。在这些建筑物设计中,引入了横截面的倒角调整和锥度设计。除此之外,另一种引人注目的方案是设计一个能适应城市高楼林立复杂风环境变化的建筑,即设计动态立面。建筑形状的自主动态变形超越了传统静态形状优化设计,通过将传感、计算、传动装置和工程信息学融合在一起的信息物理系统而实现,并在本研究中进行了论证。新提出的方法将使建筑物能够智能地改变其轮廓,最大限度减弱动态风荷载激励,并有望通过利用计算设计的迅速发展,推动高层建筑设计从传统的静态立面转变为动态立面。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Kareem A, Kijewski T, Tamura Y. Mitigation of motions of tall buildings with specific examples of recent applications. Wind Struct 1999;2(3):201–51. 链接1

[ 2 ] Irwin PA. Bluff body aerodynamics in wind engineering. J Wind Eng Ind Aerodyn 2008;96(6–7):701–12. 链接1

[ 3 ] Irwin PA. Wind engineering challenges of the new generation of supertall buildings. J Wind Eng Ind Aerodyn 2009;97(7–8):328–34. 链接1

[ 4 ] Kareem A, Spence SM, Bernardini E, Bobby S, Wei D. Wind engineering: using computational fluid dynamics to optimize tall building design. CTBUH J 2013;3:38–43. 链接1

[ 5 ] Bernardini E, Spence SM, Wei D, Kareem A. Aerodynamic shape optimization of civil structures: a CFD-enabled Kriging-based approach. J Wind Eng Ind Aerodyn 2015;144:154–64. 链接1

[ 6 ] Ding F, Kareem A, Wan J. Aerodynamic tailoring of structures using computational fluid dynamics. Struct Eng Int 2019;29(1):26–39. 链接1

[ 7 ] Brewick P, Divel L, Butler K, Bashor R, Kareem A. Consequence of urban aerodynamics and debris impact in extreme wind events. In: Proceedings of the 11th Americas conference on wind engineering; 2009 Jun 22–26; San Juan, Puerto Rico; 2009.

[ 8 ] Chan AKC. Tackling global grand challenges in our cities. Engineering 2016;2 (1):10–5. 链接1

[ 9 ] Crawley EF. Intelligent structures for aerospace—a technology overview and assessment. AIAA J 1994;32(8):1689–99. 链接1

[10] Korkmaz S. A review of active structural control: challenges for engineering informatics. Comput Struc 2011;89(23–24):2113–32. 链接1

[11] Karanouh A, Kerber E. Innovations in dynamic architecture. J Facade Des Eng 2015;3(2):185–221. 链接1

[12] Kwok K, Wilhelm P, Wilkie B. Effect of edge configuration on wind-induced response of tall buildings. Eng Struct 1988;10(2):135–40. 链接1

[13] Miyashita K, Katagiri J, Nakamura O, Ohkuma T, Tamura Y, Itoh M, et al. Windinduced response of high-rise buildings effects of corner cuts or openings in square buildings. J Wind Eng Ind Aerodyn 1993;50:319–28. 链接1

[14] Tanaka H, Tamura Y, Ohtake K, Nakai M, Kim YC. Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations. JWind Eng Ind Aerodyn 2012;107–108:179–91. 链接1

[15] Xie J. Aerodynamic optimization of super-tall buildings and its effectiveness assessment. J Wind Eng Ind Aerodyn 2014;130:88–98. 链接1

[16] Konak A, Coit DW, Smith AE. Multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Saf 2006;91(9):992–1007. 链接1

[17] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 2002;6(2):182–97. 链接1

[18] Forrester A, Sobester A, Keane A. Engineering design via surrogate modelling: a practical guide. Hoboken: John Wiley & Sons Inc.; 2008. 链接1

[19] Ferziger JH, Peric M. Computational methods for fluid dynamics. Berlin: Springer Science & Business Media; 2012. 链接1

[20] Ding F, Kareem A. A multi-fidelity shape optimization via surrogate modeling for civil structures. J Wind Eng Ind Aerodyn 2018;178:49–56. 链接1

[21] McEvoy MA, Correll N. Materials that couple sensing, actuation, computation, and communication. Science 2015;347(6228):1261689. 链接1

[22] Bengisu M, Ferrara M. Materials that move: smart materials, intelligent design. Cham: Springer; 2018. 链接1

[23] Valasek J. Morphing aerospace vehicles and structures. Hoboken: John Wiley & Sons Inc.; 2012. 链接1

[24] Sanders B, Crowe R, Garcia E. Defense advanced research projects agency— smart materials and structures demonstration program overview. J Intell Mater Syst Struct 2004;15(4):227–33. 链接1

[25] Chen T, Bilal OR, Lang R, Daraio C, Shea K. Autonomous deployment of a solar panel using elastic origami and distributed shape-memory polymer actuators. Phys Rev Appl 2019;11(6):064069. 链接1

[26] Rosenfield K. TEDx: Metal that breathes/Doris Kim Sung [Internet]. ArchDaily; c2008–2020 [cited 2019 Jul 29]. Available from: https://www.archdaily.com/ 293386/ tedx-metal-that-breathes-doris-kim-sung/.

[27] Tibbits S. 4D printing: multi-material shape change. Archit Des 2014;84 (1):116–21. 链接1

[28] Al-Obaidi KM, Azzam Ismail M, Hussein H, Abdul Rahman AM. Biomimetic building skins: an adaptive approach. Renew Sustain Energy Rev 2017;79:1472–91. 链接1

[29] Dean B, Bhushan B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Philos Trans A Math Phys Eng Sci 1929;2010(368):4775–806. 链接1

[30] ICD/ITKE University of Stuttgart [Internet]. Urbach Tower [cited 2019 Jul 29]. Available from: https://www.icd.uni-stuttgart.de/projects/remstalgartenschau-2019-urbach-turm/.

[31] One ocean, Thematic Pavilion EXPO 2012/soma [Internet]. ArchDaily; c2008– 2020 [cited 2019 Jul 29]. Available from: https://www.archdaily.com/236979/ one-ocean-thematic-pavilion-expo-2012-soma.

[32] Del Grosso A, Basso P. Adaptive building skin structures. Smart Mater Struct 2010;19(12):124011. 链接1

[33] Easy K–Kenneth Snelson. Gibbs Farm Sculpture Park [Internet]. Flickr. Available from: https://www.flickr.com/photos/robinzblog/8576091099.

[34] Tibert A, Pellegrino S. Review of form-finding methods for tensegrity structures. Int J Space Structures 2003;18(4):209–23. 链接1

[35] Wikimedia Commons. File:Tokyo dome.JPG [Internet]. Wikimedia Commons, the free media repository; 2020 [updated 2020 Sep 7; cited 2020 Sep 9]. Available from: https://commons.wikimedia.org/w/index.php?title=File: Tokyo_dome.JPG&oldid=451300758.

[36] Puig L, Barton A, Rando N. A review on large deployable structures for astrophysics missions. Acta Astronaut 2010;67(1–2):12–26. 链接1

[37] Min Z, Kien VK, Richard LJ. Aircraft morphing wing concepts with radical geometry change. IES J Part A Civ Struct Eng 2010;3(3):188–95. 链接1

[38] Reis PM, López Jiménez F, Marthelot J. Transforming architectures inspired by origami. Proc Natl Acad Sci USA 2015;112(40):12234–5. 链接1

[39] Filipov ET, Tachi T, Paulino GH. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proc Natl Acad Sci USA 2015;112 (40):12321–6. 链接1

[40] Tachi T. Geometric considerations for the design of rigid origami structures. In: Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium; 2010 Aug 3–7; Shanghai, China; 2010.

[41] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436–44. 链接1

[42] Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA. A brief survey of deep reinforcement learning. IEEE Signal Process Mag 2017;34(6):26–38. 链接1

[43] Murphy KP. Machine learning: a probabilistic perspective. Cambridge: MIT press; 2012. 链接1

[44] Sallab AE, Abdou M, Perot E, Yogamani S. Deep reinforcement learning framework for autonomous driving. Electron Imaging 2017;2017(19):70–6. 链接1

[45] Goecks VG, Leal PB, White T, Valasek J, Hartl DJ. Control of morphing wing shapes with deep reinforcement learning. In: Proceedings of the 2018 AIAA Information Systems-AIAA Infotech@Aerospace; 2018 Jan 8–12; Kissimmee, FL, USA; 2018.

[46] Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, et al. Continuous control with deep reinforcement learning. In: Proceedings of 4th International Conference on Learning Representations; 2016 May 2–4; San Juan, Puerto Rico; 2016.

[47] Åström KJ, Hägglund T. The future of PID control. Control Eng Pract 2001;9 (11):1163–75.

[48] Mei G, Kareem A, Kantor JC. Model predictive control of wind-excited building: benchmark study. J Eng Mech 2004;130(4):459–65. 链接1

[49] Lee EA. Cyber physical systems: design challenges. In: Proceedings of the 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC); 2008 May 5–7; Orlando, FL, USA; 2008.

[50] Atzori L, Iera A, Morabito G. The Internet of Things: a survey. Comput Netw 2010;54(15):2787–805. 链接1

[51] Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M. Internet of Things for smart cities. IEEE Internet Things J 2014;1(1):22–32. 链接1

[52] Lynch JP, Loh KJ. A summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vib Dig 2006;38(2):91–128. 链接1

[53] Feng Z, Katafygiotis L. The effect of non-synchronous sensing on structural identification and its correction. Smart Struct Syst 2016;18(3):541–68. 链接1

[54] Guo Y, Kwon DK, Kareem A. Near-real-time hybrid system identification framework for civil structures with application to Burj Khalifa. J Struct Eng 2016;142(2):04015132. 链接1

[55] Rabault J, Kuchta M, Jensen A, R’eglade U, Cerardi N. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control. J Fluid Mech 2019;865:281–302.

[56] Sutton RS, Barto AG. Reinforcement learning: an introduction. Cambridge: MIT press; 2018. 链接1

[57] Rabault J, Ren F, Zhang W, Tang H, Xu H. Deep reinforcement learning in fluid mechanics: a promising method for both active flow control and shape optimization. J Hydrodyn 2020;32:234–46. 链接1

[58] Kingma DP, Ba J. Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference for Learning Representations; 2015 May 7–9; San Diego, CA, USA; 2015.

相关研究