期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第1期 doi: 10.1016/j.eng.2020.07.025

石墨相氮化碳负载杂多酸——水相中高效光氧化苯甲醇

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

收稿日期: 2019-11-17 修回日期: 2020-07-03 录用日期: 2020-07-03 发布日期: 2020-11-19

下一篇 上一篇

摘要

苯甲醛是一类重要化学品,在医药、化学合成和食品等领域具有广泛应用。然而,苯甲醛的生产过程通常涉及三氟甲苯或乙腈等危险溶剂的使用,并且,苯甲醛在水相反应体系中的转化率,尤其是选择性一直是难点。因此,开发一种环境友好的苯甲醛合成工艺具有极其重要的意义。在本文中,我们通过在磷酸功能化的石墨相氮化碳(g-C3N4)纳米片上负载磷钨酸成功制备了新型光催化剂(PW12-P-UCNS,其中,PW12为H3PW12O40·xH2O,P-UCNS为磷酸修饰的超薄石墨相氮化碳)。选取水相中苯甲醇光氧化制备苯甲醛的反应为模型反应,在室温条件下,对PW12-P-UCNS的催化性能进行了系统探究。所制备的PW12-P-UCNS光催化剂在2 h内的转化率为58.3%,选择性为99.5%,可重复使用5次以上,且活性未发生明显损失。同时,本文揭示了PW12-P-UCNS催化模型反应的Z型机理,系统分析了催化剂的光电流和光化学阻抗性能,并通过电子自旋共振测试和自由基捕获实验证明了超氧自由基和光生空穴是其主要反应活性物质。基于此,所设计的PW12-P-UCNS光催化剂对于在温和条件下通过水相光氧化反应生产苯甲醛具有广阔的应用前景。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Su Y, Han Z, Zhang L, Wang W, Duan M, Li X, et al. Surface hydrogen bonds assisted meso-porous WO3 photocatalysts for high selective oxidation of benzylalcohol to benzylaldehyde. Appl Catal B 2017;217:108–14. 链接1

[ 2 ] Xiao CL, Zhang L, Hao HC, Wang WZ. High selective oxidation of benzyl alcohol to benzylaldehyde and benzoic acid with surface oxygen vacancies on W18O49/holey ultrathin g-C3N4 nanosheets. ACS Sustain Chem Eng 2019;7 (7):7268–76. 链接1

[ 3 ] Xing MY, Qiu BC, Du MM, Zhu QH, Wang LZ, Zhang JL. Spatially separated CdS shells exposed with reduction surfaces for enhancing photocatalytic hydrogen evolution. Adv Funct Mater 2017;27(35):1702624. 链接1

[ 4 ] Xiao X, Zheng CX, Lu ML, Zhang L, Liu F, Zuo XX, et al. Deficient Bi24O31Br10 as a highly efficient photocatalyst for selective oxidation of benzyl alcohol into benzaldehyde under blue LED irradiation. Appl Catal B 2018;228:142–51. 链接1

[ 5 ] Yang X, Zhao H, Feng J, Chen Y, Gao S, Cao R. Visible-light-driven selective oxidation of alcohols using a dye-sensitized TiO2-polyoxometalate catalyst. J Catal 2017;351:59–66. 链接1

[ 6 ] Chen ZM, Wang JG, Zhai GJ, An W, Men Y. Hierarchical yolk-shell WO3 microspheres with highly enhanced photoactivity for selective alcohol oxidations. Appl Catal B 2017;218:825–32. 链接1

[ 7 ] Chen YZ, Wang ZU, Wang H, Lu J, Yu SH, Jiang HL. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: the roles of photothermal effect and Pt electronic state. J Am Chem Soc 2017;139 (5):2035–44. 链接1

[ 8 ] Sun XS, Luo X, Zhang XD, Xie JF, Jin S, Wang H, et al. Enhanced superoxide generation on defective surfaces for selective photooxidation. J Am Chem Soc 2019;141(9):3797–801. 链接1

[ 9 ] Derikvandi H, Nezamzadeh-Ejhieh A. Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: effect of coupling, supporting, particles size and calcination temperature. J Hazard Mater 2017;321:629–38. 链接1

[10] Rüther T, Bond AM, Jackson WR. Solar light induced photocatalytic oxidation of benzyl alcohol using heteropolyoxometalate catalysts of the type [S2M18O62] 4–. Green Chem 2003;5(4):364–6. 链接1

[11] Gao SY, Cao R, Lü J, Li GL, Li YF, Yang HX. Photocatalytic properties of polyoxometalate–thionine composite films immobilized onto microspheres under sunlight irradiation. J Mater Chem 2009;19(24):4157–63. 链接1

[12] Meng JQ, Wang XY, Yang X, Hu A, Guo YH, Yang YX. Enhanced gas-phase photocatalytic removal of aromatics over direct Z-scheme-dictated H3PW12O40/g-C3N4 film-coated optical fibers. Appl Catal B 2019;251: 168–80. 链接1

[13] Xiao CL, Zhang L, Wang KF, Wang HP, Zhou YY, Wang WZ. A new approach to enhance photocatalytic nitrogen fixation performance via phosphate-bridge: a case study of SiW12/K-C3N4. Appl Catal B 2018;239:260–7. 链接1

[14] Liu JH, Zhang TK, Wang ZC, Dawson G, Chen W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J Mater Chem 2011;21(38):14398–401. 链接1

[15] Zhang YJ, Thomas A, Antonietti M, Wang XC. Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments. J Am Chem Soc 2009;131(1):50–1. 链接1

[16] Du XR, Zou GJ, Wang ZH, Wang XL. A scalable chemical route to soluble acidified graphitic carbon nitride: an ideal precursor for isolated ultrathin g-C3N4 nanosheets. Nanoscale 2015;7(19):8701–6. 链接1

[17] Wang HF, Zhao M, Zhao Q, Yang YF, Wang CY, Wang YJ. In-situ immobilization of H5PMo10V2O40 on protonated graphitic carbon nitride under hydrothermal conditions: a highly efficient and reusable catalyst for hydroxylation of benzene. Ind Eng Chem Res 2017;56(10):2711–21. 链接1

[18] Ou HH, Tang C, Chen XR, Zhou M, Wang XC. Solvated electrons for photochemistry syntheses using conjugated carbon nitride polymers. ACS Catal 2019;9(4):2949–55. 链接1

[19] Yu HJ, Shi R, Zhao YX, Bian T, Zhao YF, Zhou C, et al. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv Mater 2017;29 (16):1605148. 链接1

[20] Liu HF, Li HJ, Lu JM, Zeng S, Wang M, Luo NC, et al. Photocatalytic cleavage of C–C bond in lignin models under visible light on mesoporous graphitic carbon nitride through p–p stacking interaction. ACS Catal 2018;8(6):4761–71. 链接1

[21] Gao HH, Yang HC, Xu JZ, Zhang SW, Li JX. Strongly coupled g-C3N4 nanosheetsCo3O4 quantum dots as 2D/0D heterostructure composite for peroxymonosulfate activation. Small 2018;14(31):1801353. 链接1

[22] Wang WJ, Xu P, Chen M, Zeng GM, Zhang C, Zhou CY, et al. Alkali metalassisted synthesis of graphite carbon nitride with tunable band-gap for enhanced visible-light-driven photocatalytic performance. ACS Sustain Chem Eng 2018;6(11):15503–16. 链接1

[23] Zhu JJ, Xiao P, Li HL, Carabineiro SAC. Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl Mater Interfaces 2014;6 (19):16449–65. 链接1

[24] Yang SB, Gong YJ, Zhang JS, Zhan L, Ma LL, Fang ZY, et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv Mater 2013;25(17):2452–6. 链接1

[25] Lin QY, Li L, Liang SJ, Liu MH, Bi JH, Wu L. Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Appl Catal B 2015;163:135–42. 链接1

[26] Xu YG, Xu H, Wang L, Yan J, Li HM, Song YH, et al. The CNT modified white C3N4 composite photocatalyst with enhanced visible-light response photoactivity. Dalton Trans 2013;42(21):7604–13. 链接1

[27] Huang CH, Zhang WM, Yan ZM, Gao J, Liu W, Tong P, et al. Protonated mesoporous graphitic carbon nitride for rapid and highly efficient removal of microcystins. RSC Adv 2015;5(56):45368–75. 链接1

[28] Liu C, Jing LQ, He LM, Luan YB, Li CM. Phosphate-modified graphitic C3N4 as efficient photocatalyst for degrading colorless pollutants by promoting O2 adsorption. Chem Commun 2014;50(16):1999–2001. 链接1

[29] Li KX, Yan LS, Zeng ZX, Luo SL, Luo XB, Liu XM, et al. Fabrication of H3PW12O40- doped carbon nitride nanotubes by one-step hydrothermal treatment strategy and their efficient visible-light photocatalytic activity toward representative aqueous persistent organic pollutants degradation. Appl Catal B 2014;156– 157:141–52. 链接1

[30] Zhang WX, Cui JC, Tao CA, Wu YG, Li ZP, Ma L, et al. A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach. Angew Chem Int Ed 2009;48(32):5864–8. 链接1

[31] Sun YH, Meng PC, Liu X. Self-assembly of tungstophosphoric acid/acidified carbon nitride hybrids with enhanced visible-light-driven photocatalytic activity for the degradation of imidacloprid and acetamiprid. Appl Surf Sci 2018;456:259–69. 链接1

[32] Ma TY, Tang YH, Dai S, Qiao SZ. Proton-functionalized two-dimensional graphitic carbon nitride nanosheet: an excellent metal-/label-free biosensing platform. Small 2014;10(12):2382–9. 链接1

[33] Han C, Wang YD, Lei YP, Wang B, Wu N, Shi Q, et al. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res 2015;8(4):1199–209. 链接1

[34] Ong WJ, Putri LK, Tan LL, Chai SP, Yong ST. Heterostructured AgX/g-C3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide. Appl Catal B 2016;180:530–43. 链接1

[35] Yang XL, Qian FF, Zou GJ, Li ML, Lu JR, Li YM, et al. Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation. Appl Catal B 2016;193:22–35. 链接1

[36] Subudhi S, Mansingh S, Swain G, Behera A, Rath D, Parida K. HPW-anchored UiO-66 metal–organic framework: a promising photocatalyst effective toward tetracycline hydrochloride degradation and H2 evolution via Z-scheme charge dynamics. Inorg Chem 2019;58(8):4921–34. 链接1

[37] Meng PC, Heng HM, Sun YH, Huang JH, Yang JP, Liu X. Positive effects of phosphotungstic acid on the in-situ solid-state polymerization and visible light photocatalytic activity of polyimide-based photocatalyst. Appl Catal B 2018;226:487–98. 链接1

[38] Cai JS, Huang JY, Wang SC, Iocozzia J, Sun ZT, Sun JY, et al. Crafting musselinspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources. Adv Mater 2019;31(15):1806314. 链接1

[39] Wang Y, Wang XC, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed 2012;51(1):68–89. 链接1

[40] Jiang LB, Yuan XZ, Zeng GM, Liang J, Chen XH, Yu HB, et al. In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Appl Catal B 2018;227:376–85. 链接1

[41] Babaahamdi-Milani M, Nezamzadeh-Ejhieh A. A comprehensive study on photocatalytic activity of supported Ni/Pb sulfide and oxide systems onto natural zeolite nanoparticles. J Hazard Mater 2016;318:291–301. 链接1

[42] Liang FF, Zhu YF. Enhancement of mineralization ability for phenol via synergetic effect of photoelectrocatalysis of g-C3N4 film. Appl Catal B 2016;180:324–9. 链接1

[43] Yang PJ, Ou HH, Fang YX, Wang XC. A facile steam reforming strategy to delaminate layered carbon nitride semiconductors for photoredox catalysis. Angew Chem Int Ed 2017;56(14):3992–6. 链接1

[44] Du XD, Zhang YQ, Hussain I, Huang SB, Huang WL. Insight into reactive oxygen species in persulfate activation with copper oxide: activated persulfate and trace radicals. Chem Eng J 2017;313:1023–32. 链接1

[45] Sun LQ, Li B, Chu XY, Sun N, Qu Y, Zhang XL, et al. Synthesis of Si–O-bridged gC3N4/WO3 2D-heterojunctional nanocomposites as efficient photocatalysts for aerobic alcohol oxidation and mechanism insight. ACS Sustain Chem Eng 2019;7(11):9916–27. 链接1

[46] Chu MN, Hu K, Wang JS, Liu YD, Ali S, Qin CL, et al. Synthesis of g-C3N4-based photocatalysts with recyclable feature for efficient 2,4-dichlorophenol degradation and mechanisms. Appl Catal B 2019;243:57–65. 链接1

相关研究