期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第3期 doi: 10.1016/j.eng.2020.08.014

复杂曲面薄壁构件流体压力成形理论与技术研究进展

a Institute of High Pressure Fluid Forming Technology, Harbin Institute of Technology, Harbin 150001, China
b Institute of Precision Forming for High Performance, Dalian University of Technology, Dalian 116024, China

收稿日期: 2020-04-28 修回日期: 2020-06-15 录用日期: 2020-08-05 发布日期: 2020-11-05

下一篇 上一篇

摘要

 面向航空航天、汽车和高速列车等工业领域迫切需求的管、板和壳三类典型结构以及难变形材料构件,新一代流体压力成形技术得到迅速发展。本文系统介绍了管类构件低载荷液压成形、板类构件双向加压成形、椭球壳体无模液压成形和难变形材料双调热介质成形理论与工艺的最新研究进展,重点阐述了变形行为、应力调控、缺陷控制和典型应用。此外,本文还展望了流体压力成形技术的未来发展方向,包括超大尺度非均质构件超低载荷成形、金属间化合物和高熵合金构件精密成形、智能化流体压力成形工艺与装备,以及非均质强各向异性薄壳的精确有限元仿真。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

参考文献

[ 1 ] Tarlochan F, Samer F, Hamouda AMS, Ramesh S, Khalid K. Design of thin wall structures for energy absorption applications: enhancement of crashworthiness due to axial and oblique impact forces. Thin-Walled Struct 2013;71:7–17. 链接1

[ 2 ] Alkhatib SE, Tarlochan F, Hashem A, Sassi S. Collapse behavior of thin-walled corrugated tapered tubes under oblique impact. Thin-Walled Struct 2018;122:510–28. 链接1

[ 3 ] Wang L, Strangwood M, Balint D, Lin J, Dean TA. Formability and failure mechanisms of AA2024 under hot forming conditions. Mater Sci Eng A 2011;528(6):2648–56. 链接1

[ 4 ] Kleiner M, Geiger M, Klaus A. Manufacturing of lightweight components by metal forming. CIRP Ann 2003;52(2):521–42. 链接1

[ 5 ] Zheng K, Politis DJ, Wang L, Lin J. A review on forming techniques for manufacturing lightweight complex-shaped aluminium panel components. Int J Lightweight Mater Manuf 2018;1(2):55–80. 链接1

[ 6 ] Shao Z, Li N, Lin J, Dean T. Formability evaluation for sheet metals under hot stamping conditions by a novel biaxial testing system and a new materials model. Int J Mech Sci 2017;120:149–58. 链接1

[ 7 ] Palumbo G, Tricarico L. Numerical and experimental investigations on the warm deep drawing process of circular aluminum alloy specimens. J Mater Process Technol 2007;184(1–3):115–23. 链接1

[ 8 ] Bai Q, Lin J, Dean TA, Balint DS, Gao T, Zhang Z. Modelling of dominant softening mechanisms for Ti–6Al–4V in steady state hot forming conditions. Mater Sci Eng A 2013;559:352–8. 链接1

[ 9 ] Mosleh AO, Mikhaylovskaya AV, Kotov AD, Kwame JS. Experimental, modelling and simulation of an approach for optimizing the superplastic forming of Ti– 6%Al–4%V titanium alloy. J Manuf Processes 2019;45:262–72. 链接1

[10] Kim YW, Kim SL. Advances in gammalloy materials–processes–application technology: successes, dilemmas, and future. JOM 2018;70(4):553–60. 链接1

[11] Gopinath K, Gogia AK, Kamat SV, Balamuralikrishnan R, Ramamurty U. Tensile properties of Ni-based superalloy 720Li: temperature and strain rate effects. Metall Mater Trans A 2008;39:2340–50. 链接1

[12] Vollertsen F. Accuracy in process chains using hydroforming. J Mater Process Technol 2000;103(3):424–33. 链接1

[13] Lim Y, Venugopal R, Ulsoy AG. Process control sheet-metal stamping. London: Springer; 2014. 链接1

[14] Wang G, Zhao Y, Hao Y. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing. J Mater Sci Technol 2018;34(1):73–91. 链接1

[15] Muammer K. Hydroforming for advanced manufacturing. Cambridge: Woodhead Publishing Limited; 2008. 链接1

[16] Dohmann F, Hartl C. Hydroforming—a method to manufacture light-weight parts. J Mater Process Technol 1996;60(1–4):669–76. 链接1

[17] Schmoeckel D, Hielscher C, Huber R, Geiger M. Metal forming of tubes and sheets with liquid and other flexible media. CIRP Ann 1999;48(2):497–513. 链接1

[18] Ahmetoglu M, Altan T. Tube hydroforming: state-of-the-art and future trends. J Mater Process Technol 2000;98(1):25–33. 链接1

[19] Hartl C. Research and advances in fundamentals and industrial applications of hydroforming. J Mater Process Technol 2005;167(2–3):383–92. 链接1

[20] Nakamura K, Nakagawa T. Sheet metal forming with hydraulic counter pressure in Japan. CIRP Ann 1987;36(1):191–4. 链接1

[21] Yuan S. [Modern hydroforming technology]. 2nd ed. Beijing: National Defence Industry Press; 2016. Chinese. 链接1

[22] Bell C, Corney J, Zuelli N, Savings D. A state of the art review of hydroforming technology: its applications, research areas, history, and future in manufacturing. Int J Mater Form 2019;13:789–828. 链接1

[23] Liu W, Chen Y, Xu Y, Yuan S. Multi-directional sheet hydroforming of components with complex curved surface. J Netshape Form Eng 2016;8:1–6. Chinese. 链接1

[24] Yuan SJ, Han C, Wang XS. Hydroforming of automotive structural components with rectangular-sections. Int J Mach Tools Manuf 2006;46(11):1201–6. 链接1

[25] Liu G, Yuan S, Teng B. Analysis of thinning at the transition corner in tube hydroforming. J Mater Process Technol 2006;177:688–91. 链接1

[26] Yuan S, Liu G, Han C. [Mechanism analysis on reducing pressure of tube hydroforming through preform]. J Aeronaut Mater 2006;26(4):46–50. Chinese. 链接1

[27] Khalfallah A, Oliveira MC, Alves JL, Zribi T, Belhadjsalah H, Menezes LF. Mechanical characterization and constitutive parameter identification of anisotropic tubular materials for hydroforming applications. Int J Mech Sci 2015;104:91–103. 链接1

[28] Yuan S, He Z, Hu W. Present situation and developing directions of constitutive relations for non-ideal materials. J Plast Eng 2018;25(4):1–10. Chinese. 链接1

[29] Barsoum I, Al Ali KF. A procedure to determine the tangential true stress–strain behavior of pipes. Int J Press Vessel Pip 2015;128:59–68. 链接1

[30] Yuan SJ, He ZB, Zhang K, Lin YL, inventors; Harbin Institute of Technology, assignee. Method for the determination of normal anisotropy coefficient and yield stress in any direction of a tube. Chinese patent CN 110763567. 2020 Feb 7.

[31] Zhang K, He Z, Zheng K, Yuan S. Experimental verification of anisotropic constitutive models under tension–tension and tension–compression stress states. Int J Mech Sci 2020;178:105618. 链接1

[32] Xie W, Yuan S. Thickness and deformation characters of seamed tube hydroforming with twisted axis. J Mech Eng 2016;52(22):78–83. Chinese. 链接1

[33] Narayanasamy R, Loganathan C. Study on wrinkling limit of interstitial free steel sheets of different thickness when drawn through conical and tractrix dies. Mater Des 2008;29(7):1401–11. 链接1

[34] Chen Y. [Wrinkling behavior and deformation uniformity during hydroforming of 2219 aluminum alloy curved shell] [dissertation]. Harbin: Harbin Institute of Technology; 2017. Chinese. 链接1

[35] Yuan S, Fan X. Developments and perspectives on the precision forming processes for ultra-large size integrated components. Int J Extrem Manuf 2019;1:022002. 链接1

[36] Yuan S. Development of the ultra-large plasticity processing equipment in China. Bull Japan Soc Technol Plast 2018;1:14–5. 链接1

[37] Zeng Y, Yuan S, Wang F, Wang ZR. Research on the integral hydrobulge forming of ellipsoidal shells. J Mater Process Technol 1997;72(1):28–31. 链接1

[38] Zhang WW, Teng BG, Yuan SJ. Research on deformation and stress in hydroforming process of an ellipsoidal shell without constraint. Int J Adv Manuf Technol 2015;76:1555–62. 链接1

[39] Yuan SJ, Zhang WW, Teng BG. Research on hydro-forming of combined ellipsoidal shells with two axis length ratios. J Mater Process Technol 2015;219:124–32. 链接1

[40] Yuan SJ, Zhang WW. Analysis of shape variation during hydro-forming of ellipsoidal shells with double generating lines. Int J Mech Sci 2016;107:180–7. 链接1

[41] Zhang WW, Yuan SJ. Pre-form design for hydro-forming process of combined ellipsoidal shells by response surface methodology. Int J Adv Manuf Technol 2015;81:1977–86. 链接1

[42] Zheng K, Dong Y, Zheng JH, Foster A, Lin J, Dong H, et al. The effect of hot form quench (HFQ®) conditions on precipitation and mechanical properties of aluminium alloys. Mater Sci Eng A 2019;761:138017. 链接1

[43] Li Y, Shi Z, Lin J, Yang YL, Saillard P, Said R. FE simulation of asymmetric creepageing behaviour of AA2050 and its application to creep age forming. Int J Mech Sci 2018;140:228–40. 链接1

[44] Sartkulvanich P, Li D, Crist E, Yu KO. Influence of superplastic forming on reduction of yield strength property for Ti–6Al–4V fine grain sheet and Ti– 6Al–4V standard. Mater Sci Forum 2016;838–839:171–6. 链接1

[45] Zheng K, Dong Y, Zheng D, Lin J, Dean TA. An experimental investigation on the deformation and post-formed strength of heat-treatable aluminium alloys using different elevated temperature forming processes. J Mater Process Technol 2019;268:87–96. 链接1

[46] Liu G, Wang K, He B, Huang M, Yuan S. Mechanism of saturated flow stress during hot tensile deformation of a TA15 Ti alloy. Mater Des 2015;86:146–51. 链接1

[47] Zheng K, Zheng JH, He Z, Liu G, Politis DJ, Wang L. Fundamentals, processes and equipment for hot medium pressure forming of light material tubular components. Int J Lightweight Mater Manuf 2020;3(1):1–19. 链接1

[48] El Fakir O, Chen S, Wang L, Balint D, Dear JP, Lin J. Numerical investigation on the hot forming and cold-die quenching of an aluminium–magnesium alloy into a complex component. Mater Sci Forum 2013;765:368–72. 链接1

[49] Zheng K, Zhu L, Lin J, Dean TA, Li N. An experimental investigation of the drawability of AA6082 sheet under different elevated temperature forming processes. J Mater Process Technol 2019;273:116225. 链接1

[50] Liu G, Wang J, Dang K, Tang Z. High pressure pneumatic forming of Ti–3Al– 2.5V titanium tubes in a square cross-sectional die. Materials 2014;7 (8):5992–6009. 链接1

[51] Mohamed MS, Foster AD, Lin J, Balint DS, Dean TA. Investigation of deformation and failure features in hot stamping of AA6082: experimentation and modelling. Int J Mach Tools Manuf 2012;53 (1):27–38. 链接1

[52] Wu Y, Wang D, Liu Z, Liu G. A unified internal state variable material model for Ti2AlNb-alloy and its applications in hot gas forming. Int J Mech Sci 2019;164:105126. 链接1

[53] Wu Y, Liu G, Wang K, Liu Z, Yuan S. The deformation and microstructure of Ti– 3Al–2.5V tubular component for non-uniform temperature hot gas forming. Int J Adv Manuf Technol 2017;88:2143–52. 链接1

相关研究