期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第6期 doi: 10.1016/j.eng.2020.08.020

废弃塑料和废弃胎胶的增值综合回收及其在路面工程中的可持续性实践

a Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
b School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430073, China
c Henan Province Highway Management Center of Toll and Loan, Zhengzhou 450000, China
d School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
e Key Laboratory of Road and Traffic Engineering, Tongji University, Shanghai 201804, China

收稿日期: 2020-05-10 修回日期: 2020-07-16 录用日期: 2020-08-05 发布日期: 2020-12-18

下一篇 上一篇

摘要

废弃聚对苯二甲酸乙二醇酯(PET)饮料瓶等废弃塑料和废弃橡胶轮胎为主要的城市固体废弃物,如不进行合理回收,可能会引发各种环境问题。本研究对这两种废弃物经综合处理后用作沥青路面性能增强改性剂的可行性进行了分析。通过采用三乙烯四胺(TETA)和乙醇胺(EA)对废弃PET进行处理,分析废弃PET经处理获得添加剂的回收机理,同时表征这两种添加剂在改性橡胶沥青过程中的表现。鉴于此,本文采用红外光谱和热分析法对PET添加剂(PET-TETA和PET-EA)进行了研究,进而通过红外光谱、黏度、动态剪切流变和多次应力蠕变恢复等试验对这两种PET添加剂改性的橡胶沥青进行了分析。结果表明:通过化学处理后,废弃PET可被增值回收为功能性添加剂,以提高橡胶沥青的整体性能。本研究所开发的回收方法不仅有助于缓解废弃PET塑料和废弃轮胎的填埋问题,而且可将这些废弃物转变为耐久性路面建设的高附加值新材料。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

参考文献

[ 1 ] Gigli S, Landi D, Germani M. Cost-benefit analysis of a circular economy project: a study on a recycling system for end-of-life tyres. J Cleaner Prod 2019;229:680–94. 链接1

[ 2 ] Muise I, Adams M, Côté R, Price GW. Attitudes to the recovery and recycling of agricultural plastics waste: a case study of Nova Scotia, Canada. Resour Conserv Recycl 2016;109:137–45. 链接1

[ 3 ] Sharma P, Lochab B, Kumar D, Roy PK. Sustainable bis-benzoxazines from cardanol and PET-derived terephthalamides. ACS Sustainable Chem Eng 2016;4(3):1085–93. 链接1

[ 4 ] Zhao Z, Xiao F, Amirkhanian S. Recent applications of waste solid materials in pavement engineering. Waste Manag 2020;108:78–105. 链接1

[ 5 ] Li J, Xiao F, Zhang L, Amirkhanian SN. Life cycle assessment and life cycle cost analysis of recycled solid waste materials in highway pavement: a review. J Cleaner Prod 2019;233:1182–206. 链接1

[ 6 ] Mohammadinia A, Disfani MM, Narsilio GA, Aye Lu. Mechanical behaviour and load bearing mechanism of high porosity permeable pavements utilizing recycled tire aggregates. Constr Build Mater 2018;168:794–804. 链接1

[ 7 ] Cholake ST, Rajarao R, Henderson P, Rajagopal RR, Sahajwalla V. Composite panels obtained from automotive waste plastics and agricultural macadamia shell waste. J Cleaner Prod 2017;151:163–71. 链接1

[ 8 ] Xiao S, Dong H, Geng Y, Brander M. An overview of China’s recyclable waste recycling and recommendations for integrated solutions. Resour Conserv Recycl 2018;134:112–20. 链接1

[ 9 ] Sienkiewicz M, Janik H, Borze˛dowska-Labuda K, Kucin´ ska-Lipka J. Environmentally friendly polymer–rubber composites obtained from waste tyres: a review. J Cleaner Prod 2017;147:560–71. 链接1

[10] Kawecki D, Scheeder PRW, Nowack B. Probabilistic material flow analysis of seven commodity plastics in Europe. Environ Sci Technol 2018;52 (17):9874–88. 链接1

[11] Kahlen S, Wallner GM, Lang RW. Aging behavior of polymeric solar absorber materials—part 1: engineering plastics. Sol Energy 2010;84(9):1567–76. 链接1

[12] Padsalgikar AD. 3-Speciality plastics in cardiovascular applications. In: Padsalgikar AD, editor. Plastics in medical devices for cardiovascular applications. New York: William Andrew Publishing; 2017. p. 53–82. 链接1

[13] Dahlbo H, Poliakova V, Mylläri V, Sahimaa O, Anderson R. Recycling potential of post-consumer plastic packaging waste in Finland. Waste Manag 2018;71:52–61. 链接1

[14] Park JY, Gupta C. Evaluating localism in the management of post-consumer plastic bottles in Honolulu, Hawaii: perspectives from industrial ecology and political ecology. J Environ Manage 2015;154:299–306. 链接1

[15] Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv 2017;3(7):e1700782. 链接1

[16] Association of Plastic Recyclers, the American Chemistry Council. United States national post-consumer plastic bottle recycling report. Washington, DC: Plastics Division of the Association of Plastic Recyclers and the American Chemistry Council; 2017.

[17] Hosseinnezhad S, Kabir SF, Oldham D, Mousavi M, Fini EH. Surface functionalization of rubber particles to reduce phase separation in rubberized asphalt for sustainable construction. J Cleaner Prod 2019;225:82–9. 链接1

[18] Chen Z, Wang T, Pei J, Amirkhanian S, Xiao F, Ye Q, et al. Low temperature and fatigue characteristics of treated crumb rubber modified asphalt after a long term aging procedure. J Cleaner Prod 2019;234:1262–74. 链接1

[19] Asgharzadeh SM, Sadeghi J, Peivast P, Pedram M. Fatigue properties of crumb rubber asphalt mixtures used in railways. Constr Build Mater 2018;184:248–57. 链接1

[20] Paje SE, Luong J, Vázquez VF, Bueno M, Miró R. Road pavement rehabilitation using a binder with a high content of crumb rubber: influence on noise reduction. Constr Build Mater 2013;47:789–98. 链接1

[21] Wang H, You Z, Mills-Beale J, Hao P. Laboratory evaluation on high temperature viscosity and low temperature stiffness of asphalt binder with high percent scrap tire rubber. Constr Build Mater 2012;26(1):583–90. 链接1

[22] Baghaee Moghaddam T, Soltani M, Karim MR. Stiffness modulus of polyethylene terephthalate modified asphalt mixture: a statistical analysis of the laboratory testing results. Mater Des 2015;68:88–96. 链接1

[23] Modarres A, Hamedi H. Effect of waste plastic bottles on the stiffness and fatigue properties of modified asphalt mixes. Mater Des 2014;61:8–15. 链接1

[24] Hassani A, Ganjidoust H, Maghanaki AA. Use of plastic waste (poly-ethylene terephthalate) in asphalt concrete mixture as aggregate replacement. Waste Manag Res 2005;23(4):322–7. 链接1

[25] Raheem AB, Noor ZZ, Hassan A, Abd Hamid MK, Samsudin SA, Sabeen AH. Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: a review. J Cleaner Prod 2019;225:1052–64. 链接1

[26] Liu S, Zhou L, Li L, Yu S, Liu F, Xie C, et al. Isooctanol alcoholysis of waste polyethylene terephthalate in acidic ionic liquid. J Polym Res 2013;20(12):310. 链接1

[27] Sinha V, Patel MR, Patel JV. PET waste management by chemical recycling: a review. J Polym Environ 2010;18(1):8–25. 链接1

[28] Khoonkari M, Haghighi AH, Sefidbakht Y, Shekoohi K, Ghaderian A. Chemical recycling of PET wastes with different catalysts. Int J Polym Sci 2015;2015:1–11. 链接1

[29] Carta D, Cao G, D’Angeli C. Chemical recycling of poly(ethylene terephthalate) (PET) by hydrolysis and glycolysis. Environ Sci Pollut Res Int 2003;10 (6):390–4. 链接1

[30] Leng Z, Padhan RK, Sreeram A. Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt. J Cleaner Prod 2018;180:682–8. 链接1

[31] Leng Z, Sreeram A, Padhan RK, Tan Z. Value-added application of waste PET based additives in bituminous mixtures containing high percentage of reclaimed asphalt pavement (RAP). J Cleaner Prod 2018;196:615–25. 链接1

[32] Sreeram A, Leng Z, Padhan RK, Qu X. Eco-friendly paving materials using waste PET and reclaimed asphalt pavement. HKIE Trans 2018;25(4):237–47. 链接1

[33] Jin X, Guo NS, You ZP, Wang L, Wen YK, Tan YQ. Rheological properties and micro-characteristics of polyurethane composite modified asphalt. Construct Build Mater 2020;234:117395. 链接1

[34] Singh B, Kumar P. Effect of polymer modification on the ageing properties of asphalt binders: chemical and morphological investigation. Constr Build Mater 2019;205:633–41. 链接1

[35] Yu H, Leng Z, Gao Z. Thermal analysis on the component interaction of asphalt binders modified with crumb rubber and warm mix additives. Constr Build Mater 2016;125:168–74. 链接1

[36] ASTM D4402-02. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. ASTM standard. West Conshohocken: ASTM International; 2015.

[37] Hong Kong Special Administrative Region Government. Hong Kong observatory 2018 [Internet]. Hong Kong: Hong Kong Special Administrative Region Government; 2019 [cited 2020 May 10]. Available from: https://www. hko.gov.hk/en/abouthko/files/hko2018e.pdf.

[38] Li R, Leng Z, Zhang Y, Ma X. Preparation and characterization of waterborne epoxy modified bitumen emulsion as a potential high-performance cold binder. J Cleaner Prod 2019;235:1265–75. 链接1

[39] ASTM D7175-15. Standard test method for determining the rheological properties of asphalt binder using a dynamic shear rheometer. ASTM standard. West Conshohocken: ASTM International; 2015.

[40] ASTM D6521-19a. Standard practice for accelerated aging of asphalt binder using a pressurized aging vessel (PAV). ASTM standard. West Conshohocken: ASTM International; 2019.

[41] Behnood A, Olek J. Stress-dependent behavior and rutting resistance of modified asphalt binders: an MSCR approach. Constr Build Mater 2017;157:635–46. 链接1

[42] Dong Z, Yang C, Luan H, Zhou T, Wang P. Chemical characteristics of bioasphalt and its rheological properties after CR/SBS composite modification. Constr Build Mater 2019;200:46–54. 链接1

[43] ASTM D2872-19. Standard test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test). ASTM standard. West Conshohocken: ASTM International; 2019.

[44] Phiri MM, Sibeko MA, Phiri MJ, Hlangothi SP. Effect of free foaming and precuring on the thermal, morphological and physical properties of reclaimed tyre rubber foam composites. J Cleaner Prod 2019;218:665–72. 链接1

[45] Wang T, Xiao F, Zhu X, Huang B, Wang J, Amirkhanian S. Energy consumption and environmental impact of rubberized asphalt pavement. J Cleaner Prod 2018;180:139–58. 链接1

[46] Yu H, Leng Z, Zhou Z, Shih K, Xiao F, Gao Z. Optimization of preparation procedure of liquid warm mix additive modified asphalt rubber. J Cleaner Prod 2017;141:336–45. 链接1

[47] Zhou X, Wang C, Fang C, Yu R, Li Y, Lei W. Structure and thermal properties of various alcoholysis products from waste poly(ethylene terephthalate). Waste Manag 2019;85:164–74. 链接1

[48] Deleu WPR, Stassen I, Jonckheere D, Ameloot R, De Vos DE. Waste PET (bottles) as a resource or substrate for MOF synthesis. J Mater Chem A Mater Energy Sustain 2016;4(24):9519–25. 链接1

[49] AASHTO M 320. Standard specification for performance-graded asphalt binder. AASHTO standard. Washington, DC: American Association of State Highway and Transportation Officials; 2017.

[50] AASHTO M 332. Standard specification for performance-graded asphalt binder using multiple stress creep recovery (MSCR) test. AASHTO standard.Washington, DC: American Association of State Highway and Transportation Officials; 2019.

相关研究