期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第12卷 第5期 doi: 10.1016/j.eng.2020.08.029

面向可再生资源制氢的NixMg1−xO载氧体基于晶格限域的氧活性调控研究

a Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
c Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China

收稿日期: 2020-04-02 修回日期: 2020-08-05 录用日期: 2020-08-10 发布日期: 2022-02-25

下一篇 上一篇

摘要

生物乙醇化学链蒸汽重整(CLSR)是一种能效高且碳中性的氢气生产技术。本文研究了NixMg1−xO固溶体作为载氧体在乙醇化学链蒸汽重整过程中的应用。在NixMg1−xO固溶体中,在Mg2+的调节作用下,化学链蒸汽重整过程表现为三个反应阶段:第一阶段,NixMg1−xO的表面氧与乙醇发生完全氧化反应并使NixMg1−xO固溶体部分还原;第二阶段,随着表面氧的消耗,水分子和Mg2+限域下的体相氧与乙醇反应,经CH3COO*路径生成氢气;第三阶段,表面氧和体相氧消耗后,生成的金属Ni 催化乙醇蒸汽重整反应,使其持续产氢。在具有不同组成的NixMg1−xO固溶体中,Ni0.4Mg0.6O在水碳比为1 的条件下表现出每摩尔乙醇产生4.72 mol氢气的高氢气选择性和超过30 个循环的高稳定性。上述研究表明,固溶体型氧载体的设计为开发和应用化学链过程提供了一种新的策略。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Hosseini SE, Wahid MA. Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew Sustain Energy Rev 2016;57:850‒66. 链接1

[ 2 ] Liu T, Liu D, Qu F, Wang D, Zhang L, Ge R, et al. Enhanced electrocatalysis for energy-efficient hydrogen production over cop catalyst with nonelectroactive Zn as a promoter. Adv Energy Mater 2017;7(15):1700020. 链接1

[ 3 ] Liu D, Liu T, Zhang L, Qu F, Du G, Asiri AM, et al. High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode. J Mater Chem A 2017;5(7):3208‒13. 链接1

[ 4 ] Tang C, Qu F, Asiri AM, Luo Y, Sun X. CoP nanoarray: a robust non-noble-metal hydrogen-generating catalyst toward effective hydrolysis of ammonia borane. Inorg Chem Front 2017;4(4):659‒62. 链接1

[ 5 ] Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 2017;67:597‒611. 链接1

[ 6 ] Mendiara T, García-Labiano F, Abad A, Gayán P, de Diego LF, Izquierdo MT, et al. Negative CO2 emissions through the use of biofuels in chemical looping technology: a review. Appl Energy 2018;232:657‒84. 链接1

[ 7 ] Xie Z, Liu Z, Wang Y, Jin Z. Applied catalysis for sustainable development of chemical industry in China. Natl Sci Rev 2015;2(2):167‒82. 链接1

[ 8 ] Rosmaninho MG, Moura FCC, Souza LR, Nogueira RK, Gomes GM, Nascimento JS, et al. Investigation of iron oxide reduction by ethanol as a potential route to produce hydrogen. Appl Catal B Environ 2012;‍115‒116:45‒52.

[ 9 ] Li D, Li X, Gong J. Catalytic reforming of oxygenates: state of the art and future prospects. Chem Rev 2016;116(19):11529‒653. 链接1

[10] Yang F, Deng D, Pan X, Fu Q, Bao X. Understanding nano effects in catalysis. Natl Sci Rev 2015;2(2):183‒201. 链接1

[11] Liu Y, Zhao G, Wang D, Li Y. Heterogeneous catalysis for green chemistry based on nanocrystals. Natl Sci Rev 2015;2(2):150‒66. 链接1

[12] Dharanipragada NVRA, Galvita VV, Poelman H, Buelens LC, Detavernier C, Marin GB. Bifunctional Co- and Ni-ferrites for catalyst-assisted chemical looping with alcohols. Appl Catal B Environ 2018;222:59‒72. 链接1

[13] Haribal VP, Chen Y, Neal L, Li F. Intensification of ethylene production from naphtha via a redox oxy-cracking scheme: process simulations and analysis. Engineering 2018;4(5):714‒21. 链接1

[14] Zeng L, Cheng Z, Fan JA, Fan LS, Gong J. Metal oxide redox chemistry for chemical looping processes. Nat Rev Chem 2018;2(11):349‒64. 链接1

[15] Cheng Z, Qin L, Fan JA, Fan LS. New insight into the development of oxygen carrier materials for chemical looping systems. Engineering 2018;4(3):343‒51. 链接1

[16] Chung C, Qin L, Shah V, Fan LS. Chemically and physically robust, commercially-viable iron-based composite oxygen carriers sustainable over 3000 redox cycles at high temperatures for chemical looping applications. Energy Environ Sci 2017;10(11):2318‒23. 链接1

[17] Han L, Zhou Z, Bollas GM. Model-based analysis of chemical-looping combustion experiments. Part I: structural identifiability of kinetic models for NiO reduction. AIChE J 2016;62(7):2419‒31. 链接1

[18] Jiang B, Dou B, Wang K, Zhang C, Song Y, Chen H, et al. Hydrogen production by chemical looping steam reforming of ethanol using NiO/montmorillonite oxygen carriers in a fixed-bed reactor. Chem Eng J 2016;298:96‒106. 链接1

[19] Richardson JT, Scates RM, Twigg MV. X-ray diffraction study of the hydrogen reduction of NiO/α-Al2O3 steam reforming catalysts. Appl Catal A Gen 2004;267(1‒2):35‒46.

[20] Cheng F, Dupont V, Twigg MV. Temperature-programmed reduction of nickel steam reforming catalyst with glucose. Appl Catal A Gen 2016;527:1‒8. 链接1

[21] Giannakeas N, Lea-Langton A, Dupont V, Twigg MV. Hydrogen from scrap tyre oil via steam reforming and chemical looping in a packed bed reactor. Appl Catal B Environ 2012;126:249‒57. 链接1

[22] Yoshida T, Tanaka T, Yoshida H, Funabiki T, Yoshida S. Study on the dispersion of nickel ions in the NiO‒MgO system by X-ray absorption fine structure. J Phys Chem 1996;100(6):2302‒9. 链接1

[23] Zhao Y, Hu L, Gao S, Liao M, Sang L, Wu L. One-step self-assembly fabrication of high quality NixMg1‒xO bowl-shaped array film and its enhanced photocurrent by Mg2+ doping. Adv Funct Mater 2015;25(21):3256‒63. 链接1

[24] Saitoh T, Kinoshita K, Inada M. Bandgap bowing in Ni1-xMgxO alloy. Appl Phys Lett 2018;112(4):041904. 链接1

[25] Wei GCT, Wuensch BJ. Composition dependence of 63Ni diffusion in single-crystal NiO‒MgO solid solutions. J Am Ceram Soc 1973;56(11):562‒5. 链接1

[26] de Masi R, Reinicke D, Müller F, Steiner P, Hüfner S. The suppression of NiO reduction in Fe/NiO systems by use of an ultrathin MgO buffer layer, investigated by photoemission and low energy electron diffraction. Surf Sci 2002;516(1‒2):L51521.

[27] Huang JJ, Liu W, Yang YH. Phase interactions in Mg‒Ni‒Al‒O oxygen carriers for chemical looping applications. Chem Eng J 2017;326:470‒6. 链接1

[28] Denton AR, Ashcroft NW. Vegard’s law. Phys Rev A 1991;43(6):3161‒4. 链接1

[29] Hu YH, Ruckenstein E. An optimum NiO content in the CO2 reforming of CH4 with NiO/MgO solid solution catalysts. Catal Lett 1996;36(3‒4):145‒9.

[30] Helali Z, Jedidi A, Syzgantseva OA, Calatayud M, Minot C. Scaling reducibility of metal oxides. Theor Chem Acc 2017;136(9):100. 链接1

[31] Niedermeier CA, Råsander M, Rhode S, Kachkanov V, Zou B, Alford N, et al. Band gap bowing in NixMg1-xO. Sci Rep 2016;6(1):31230. 链接1

[32] Blank SL, Pask JA. Diffusion of iron and nickel in magnesium oxide single crystals. J Am Ceram Soc 1969;52(12):669‒75. 链接1

[33] Coenen K, Gallucci F, Mezari B, Hensen E. van Sint Annaland M. An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites. J CO2 Util 2018;24:228‒39. 链接1

[34] Ferencz Z, Erdőhelyi A, Baán K, Oszkó A, Óvári L, Kónya Z, et al. Effects of support and Rh additive on Co-based catalysts in the ethanol steam reforming reaction. ACS Catal 2014;4(4):1205‒18. 链接1

[35] Zanchet D, Santos JBO, Damyanova S, Gallo JMR, Bueno JMC. Toward understanding metal-catalyzed ethanol reforming. ACS Catal 2015;‍5(6):3841‒63. 链接1

[36] Chu PK, Li L. Characterization of amorphous and nanocrystalline carbon films. Mater Chem Phys 2006;96(2‒3):253‒77.

相关研究