期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第17卷 第10期 doi: 10.1016/j.eng.2020.08.032

一种用于隔热、阻燃和抑烟的可发性聚苯乙烯泡沫的高效绿色多孔黏合剂

The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE) & State Key Laboratory of Polymer Materials Engineering & National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China

收稿日期: 2020-03-16 修回日期: 2020-06-16 录用日期: 2020-08-07 发布日期: 2022-05-18

下一篇 上一篇

摘要

为解决建筑保温用可发性聚苯乙烯(EPS)泡沫阻燃、抑烟和隔热之间的矛盾,设计制备了一种新型的基于植酸(PA)改性淀粉的绿色多孔生物基阻燃淀粉(FRS)涂层。FRS可同时起到阻燃剂和黏合剂的作用,自身具有开孔结构,可与EPS珠粒的封闭单元形成多级孔结构,使得所得FRS-EPS泡沫表现出隔热性能,导热率仅27.0 mW⋅(m⋅K)−1。该FRS-EPS 泡沫表现出极低的热释放和烟释放速率,具有优异的阻燃性和抑烟性。比光密度低至121,比纯EPS降低了80.6%。FRS-EPS在垂直燃烧试验中也表现出自熄灭行为,极限氧指数(LOI)值高达35.5%。在酒精灯灼烧30 min 后,FRS-EPS的背部温度仅140 °C,具有优异的耐火性。阻燃机理研究表明,高温下FRS在凝聚相中形成了致密的富磷杂化屏障,气相中形成的含磷化合物实现了阻燃和抑烟。该工作为制备具有优异阻燃性、抑烟性和隔热性的聚合物泡沫提供了新思路。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

参考文献

[ 1 ] Široký J, Oldewurtel F, Cigler J, Prívara S. Experimental analysis of model predictive control for an energy efficient building heating system. Appl Energy 2011;88(9):3079‒87. 链接1

[ 2 ] Cao ZJ, Liao W, Wang SX, Zhao HB, Wang YZ. Polyurethane foams with functionalized graphene towards high fire-resistance, low smoke release, superior thermal insulation. Chem Eng J 2019;361:1245‒54. 链接1

[ 3 ] Li ME, Wang SX, Han LX, Yuan WJ, Cheng JB, Zhang AN, et al. Hierarchically porous SiO2/polyurethane foam composites towards excellent thermal insulating, flame-retardant and smoke-suppressant performances. J Hazard Mater 2019;375:61‒9. 链接1

[ 4 ] Wang SX, Zhao HB, Rao WH, Huang SC, Wang T, Liao W, et al. Inherently flame-retardant rigid polyurethane foams with excellent thermal insulation and mechanical properties. Polymer 2018;153:616‒25. 链接1

[ 5 ] Chen HB, Shen P, Chen MJ, Zhao HB, Schiraldi DA. Highly efficient flame retardant polyurethane foam with alginate/clay aerogel coating. ACS Appl Mater Interfaces 2016;8(47):32557‒64. 链接1

[ 6 ] Xu Q, Jin C, Griffin G, Jiang Y. Fire safety evaluation of expanded polystyrene foam by multi-scale methods. J Therm Anal Calorim 2014;115(2):1651‒60. 链接1

[ 7 ] Raps D, Hossieny N, Park CB, Altstädt V. Past and present developments in polymer bead foams and bead foaming technology. Polymer 2015;56:5‒19. 链接1

[ 8 ] Wang J, Chow W. A brief review on fire retardants for polymeric foams. J Appl Polym Sci 2005;97(1):366‒76. 链接1

[ 9 ] Tian HZ, Zhu CY, Gao JJ, Cheng K, Hao JM, Wang K, et al. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies. Atmos Chem Phys 2015;15(17):10127‒47. 链接1

[10] Zhang H, Kuo YY, Gerecke AC, Wang J. Co-release of hexabromocyclododecane (HBCD) and nano- and microparticles from thermal cutting of polystyrene foams. Environ Sci Technol 2012;46(20):10990‒6. 链接1

[11] Hong Y, Fang X, Yao D. Processing of composite polystyrene foam with a honeycomb structure. Polym Eng Sci 2015;55(7):1494‒503. 链接1

[12] Yu B, Liu M, Lu L, Dong X, Gao W, Tang K. Fire hazard evaluation of thermoplastics based on analytic hierarchy process (AHP) method. Fire Mater 2010;34(5):251‒60. 链接1

[13] Zhou K, Gui Z, Hu Y. The influence of graphene based smoke suppression agents on reduced fire hazards of polystyrene composites. Compos Part A Appl Sci Manuf 2016;80:217‒27. 链接1

[14] Stec AA, Hull TR. Assessment of the fire toxicity of building insulation materials. Energy Build 2011;43(2‒3):498‒506.

[15] Glück G, Dietzen FJ, Hahn K, Ehrmann G, inventors. Method for producing expandable polystyrene particles. United States patent 6444714 B1. 2002.

[16] Levchik SV, Weil ED. New developments in flame retardancy of styrene thermoplastics and foams. Polym Int 2008;57(3):431‒48. 链接1

[17] Huang J, Zhao Z, Chen T, Zhu Y, Lv Z, Gong X, et al. Preparation of highly dispersed expandable graphite/polystyrene composite foam via suspension polymerization with enhanced fire retardation. Carbon 2019;146:503‒12. 链接1

[18] Zhang S, Ji W, Han Y, Gu X, Li H, Sun J. Flame-retardant expandable polystyrene foams coated with ethanediol-modified melamine‒formaldehyde resin and microencapsulated ammonium polyphosphate. J Appl Polym Sci 2018;135(28):46471‒8. 链接1

[19] Cao Bo, Gu X, Song X, Jin X, Liu X, Liu X, et al. The flammability of expandable polystyrene foams coated with melamine modified urea formaldehyde resin. J Appl Polym Sci 2017;134(5):44423‒30. 链接1

[20] Wang Z, Jiang S, Sun H. Expanded polystyrene foams containing ammonium polyphosphate and nano-zirconia with improved flame retardancy and mechanical properties. Iran Polym J 2017;26(1):71‒9. 链接1

[21] Sayadi AA, Tapia JV, Neitzert TR, Clifton GC. Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Constr Build Mater 2016;112:716‒24. 链接1

[22] Zhu ZM, Xu YJ, Liao W, Xu SM, Wang YZ. Highly flame retardant expanded polystyrene foams from phosphorus‒nitrogen‒silicon synergistic adhesives. Ind Eng Chem Res 2017;56(16):4649‒58. 链接1

[23] Hamdani-Devarennes S, El Hage R, Dumazert L, Sonnier R, Ferry L, Lopez-Cuesta JM, et al. Water-based flame retardant coating using nano-boehmite for expanded polystyrene (EPS) foam. Prog Org Coat 2016;99:32‒46. 链接1

[24] Messer A. Mini-review: polybrominated diphenyl ether (PBDE) flame retardants as potential autism risk factors. Physiol Behav 2010;100(3):245‒9. 链接1

[25] Covaci A, Gerecke AC, Law RJ, Voorspoels S, Kohler M, Heeb NV, et al. Hexabromocyclododecanes (HBCDs) in the environment and humans: a review. Environ Sci Technol 2006;40(12):3679‒88. 链接1

[26] Li ME, Yan YW, Zhao HB, Jian RK, Wang YZ. A facile and efficient flame-retardant and smoke-suppressant resin coating for expanded polystyrene foams. Compos Part B Eng 2020;185:107797‒803. 链接1

[27] Li X, Chen H, Wang W, Liu Y, Zhao P. Synthesis of a formaldehyde-free phosphorus‍‒‍nitrogen flame retardant with multiple reactive groups and its application in cotton fabrics. Polym Degrad Stabil 2015;120:193‒202. 链接1

[28] Zhao S, Malfait WJ, Guerrero-Alburquerque N, Koebel MM, Nyström G. Biopolymer aerogels and foams: chemistry, properties, and applications. Angew Chem Int Ed 2018;57(26):7580‒608. 链接1

[29] Bergel BF, Dias Osorio S, da Luz LM, Santana RMC. Effects of hydrophobized starches on thermoplastic starch foams made from potato starch. Carbohydr Polym 2018;200:106‒14. 链接1

[30] Soykeabkaew N, Thanomsilp C, Suwantong O. A review: starch-based composite foams. Compos Part A Appl Sci Manuf 2015;78:246‒63. 链接1

[31] Shogren R, Lawton J, Doane W, Tiefenbacher K. Structure and morphology of baked starch foams. Polymer 1998;39(25):6649‒55. 链接1

[32] Wang Z, Li Z, Gu Z, Hong Y, Cheng L. Preparation, characterization and properties of starch-based wood adhesive. Carbohydr Polym 2012;‍88(2):699‒706. 链接1

[33] Zhang Y, Ding L, Gu J, Tan H, Zhu L. Preparation and properties of a starch-based wood adhesive with high bonding strength and water resistance. Carbohyd Polym 2015;115:32‒7. 链接1

[34] Guo Q, Cao J, Han Y, Tang Y, Zhang X, Lu C. Biological phytic acid as a multifunctional curing agent for elastomers: towards skin-touchable and flame retardant electronic sensors. Green Chem 2017;19(14):3418‒27. 链接1

[35] Cheng XW, Liang CX, Guan JP, Yang XH, Tang RC. Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric. Appl Surf Sci 2018;427:69‒80. 链接1

[36] Wang PJ, Liao DJ, Hu XP, Pan N, Li WX, Wang DY, et al. Facile fabrication of biobased PNC-containing nano-layered hybrid: preparation, growth mechanism and its efficient fire retardancy in epoxy. Polym Degrad Stabil 2019;‍159:153‒62. 链接1

[37] Zhao Y, Li XN, Chen T, Tang QY, Qiu LY, Wang BJ, et al. Preparation and antioxidant activity of phosphorylated polysaccharides from Russula alutacea Fr. Ekoloji 2018;27(105):17‒22.

[38] Rupper P, Gaan S, Salimova V, Heuberger M. Characterization of chars obtained from cellulose treated with phosphoramidate flame retardants. J Anal Appl Pyrolysis 2010;87(1):93‒8. 链接1

[39] Chang X, Chen D, Jiao X. Starch-derived carbon aerogels with high-performance for sorption of cationic dyes. Polymer 2010;51(16):3801‒7. 链接1

[40] Wang Y, Wu K, Xiao M, Riffat SB, Su Y, Jiang F. Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw. Carbohydr Polym 2018;197:284‒91. 链接1

[41] Wang YT, Zhao HB, Degracia K, Han LX, Sun H, Sun M, et al. Green approach to improving the strength and flame retardancy of poly(vinyl alcohol)/clay aerogels: incorporating biobased gelatin. ACS Appl Mater Interfaces 2017;9(48):42258‒65. 链接1

[42] Rao WH, Zhu ZM, Wang SX, Wang T, Tan Y, Liao W, et al. A reactive phosphorus-containing polyol incorporated into flexible polyurethane foam: self-extinguishing behavior and mechanism. Polym Degrad Stabil 2018;‍153:192‒200. 链接1

[43] Liu BW, Chen L, Guo D, Liu X, Lei Y, Ding X, et al. Fire-safe polyesters enabled by end-group capturing chemistry. Angew Chem Int Ed 2019;58(27):9188‒93. 链接1

[44] Fu T, Zhao X, Chen L, Wu W, Zhao Q, Wang XL, et al. Bioinspired color changing molecular sensor toward early fire detection based on transformation of phthalonitrile to phthalocyanine. Adv Funct Mater 2019;29(8):1806586. 链接1

[45] Li P, Wang B, Xu YJ, Jiang Z, Dong C, Liu Y, et al. Ecofriendly flame-retardant cotton fabrics: preparation, flame retardancy, thermal degradation properties, and mechanism. ACS Sustain Chem Eng 2019;7(23):19246‒56. 链接1

[46] Peng H, Wang D, Fu S. Tannic acid-assisted green exfoliation and functionalization of MoS2 nanosheets: significantly improve the mechanical and flame-retardant properties of polyacrylonitrile composite fibers. Chem Eng J 2020;384:123288. 链接1

[47] Zhao HB, Cheng JB, Wang YZ. Biomass-derived Co@crystalline carbon@carbon aerogel composite with enhanced thermal stability and strong microwave absorption performance. J Alloys Compd 2018;736:71‒9. 链接1

[48] Jian RK, Ai YF, Xia L, Zhao LJ, Zhao HB. Single component phosphamide-based intumescent flame retardant with potential reactivity towards low flammability and smoke epoxy resins. J Hazard Mater 2019;371:529‒39. 链接1

相关研究