期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第2期 doi: 10.1016/j.eng.2020.09.002

市政污泥热水解—真菌发酵产菌丝纤维回收有机质资源的研究

a Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
b Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
c Shenzhen Environmental Science and New Energy Laboratory, Tsinghua–Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
d Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, China

收稿日期: 2020-03-27 修回日期: 2020-07-17 录用日期: 2020-07-20 发布日期: 2020-09-25

下一篇 上一篇

摘要

市政污泥的处理已成为许多大城市的环境治理难题。本研究提出了基于热水解—真菌发酵—厌氧消化的三阶段精炼策略,旨在实现市政污泥的减量化和资源化。在市政污泥热水解处理中,当热水解温度由140 ℃升至180 ℃时,可以显著地提升市政污泥的减量效果和有机物的释放效率(p < 0.05)。市政污泥经过140 ℃、160 ℃和180 ℃两级热水解处理后,总挥发性固体(TVS)的去除率分别为36.6%、47.7%和58.5%,总有机碳(TOC)的溶解释放效率分别达到28.0%、38.0%和45.1%。在160 ℃下,污泥热水解上清液中的多糖和蛋白质的含量最为丰富,而在180 ℃时,由于在热水解过程中发生了美拉德反应,污泥热水解上清液的腐殖酸类物质的含量显著增加(p < 0.05)。采用黑曲霉(Aspergillus niger)进行真菌发酵,可以将市政污泥热水解上清液中的有机物转化为高附加值的菌丝纤维。在140 ℃和160 ℃下,污泥热水解上清液经过真菌发酵后,菌丝纤维的生物量分别达到1.30 g·L–1和1.27 g·L–1,对应的有机物转化率为24.6%和24.0%。从污泥热水解上清液真菌中回收的菌丝纤维可以用于生产纸基材料等高附加值产品。菌丝纤维纸结构致密,具有较好的力学性能,抗张强度可以达到10.75 N·m·g–1。在160 ℃下,污泥热水解上清液经真菌发酵耦合厌氧消化两级生物处理,能将热水解上清液超过75%的有机物进行综合利用以回收菌丝纤维和沼气。

补充材料

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Wei Y, Van Houten RT, Borger AR, Eikelboom DH, Fan Y. Minimization of excess sludge production for biological wastewater treatment. Water Res 2003;37 (18):4453–67. 链接1

[ 2 ] Franklin LB. Wastewater engineering: treatment, disposal and reuse. 3rd ed. New York: McGraw-Hill; 1991. 链接1

[ 3 ] Tasca AL, Puccini M, Gori R, Corsi I, Galletti AMR, Vitolo S. Hydrothermal carbonization of sewage sludge: a critical analysis of process severity, hydrochar properties and environmental implications. Waste Manag 2019;93:1–13. 链接1

[ 4 ] Cornel P, Schaum C. Phosphorus recovery from wastewater: needs, technologies and costs. Water Sci Technol 2009;59(6):1069–76. 链接1

[ 5 ] Chen YD, Bai S, Li R, Su G, Duan X, Wang S, et al. Magnetic biochar catalysts from anaerobic digested sludge: production, application and environment impact. Environ Int 2019;126:302–8. 链接1

[ 6 ] Chen P, Anderson E, Addy M, Zhang R, Cheng Y, Peng P, et al. Breakthrough technologies for the biorefining of organic solid and liquid wastes. Engineering 2018;4(4):574–80. 链接1

[ 7 ] Zhang Q, Hu J, Lee DJ, Chang Y, Lee YJ. Sludge treatment: current research trends. Bioresour Technol 2017;243:1159–72. 链接1

[ 8 ] Hii K, Baroutian S, Parthasarathy R, Gapes DJ, Eshtiaghi N. A review of wet air oxidation and thermal hydrolysis technologies in sludge treatment. Bioresour Technol 2014;155:289–99. 链接1

[ 9 ] Chen S, Dong B, Dai X, Wang H, Li N, Yang D. Effects of thermal hydrolysis on the metabolism of amino acids in sewage sludge in anaerobic digestion. Waste Manag 2019;88:309–18. 链接1

[10] Wang L, Li A. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: the dewatering performance and the characteristics of products. Water Res 2015;68:291–303. 链接1

[11] Xu C, Chen W, Hong J. Life-cycle environmental and economic assessment of sewage sludge treatment in China. J Clean Prod 2014;67:79–87. 链接1

[12] Youssef EA, Nakhla G, Charpentier PA. Oleic acid gasification over supported metal catalysts in supercritical water: hydrogen production and product distribution. Int J Hydrogen Energy 2011;36(8):4830–42. 链接1

[13] Zhao P, Chen H, Ge S, Yoshikawa K. Effect of the hydrothermal pretreatment for the reduction of NO emission from sewage sludge combustion. Appl Energy 2013;111:199–205. 链接1

[14] Li C, Wang X, Zhang G, Yu G, Lin J, Wang Y. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: bench-scale research and pilot-scale verification. Water Res 2017;117:49–57. 链接1

[15] Neyens E, Baeyens J. A review of thermal sludge pre-treatment processes to improve dewaterability. J Hazard Mater 2003;98(1–3):51–67. 链接1

[16] Jin F, Zhou Z, Moriya T, Kishida H, Higashijima H, Enomoto H. Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass. Environ Sci Technol 2005;39(6):1893–902. 链接1

[17] Tyagi VK, Lo SL. Sludge: a waste or renewable source for energy and resources recovery. Renew Sustain Energy Rev 2013;25:708–28. 链接1

[18] Lundin M, Olofsson M, Pettersson GJ, Zetterlund H. Environmental and economic assessment of sewage sludge handling options. Resour Conserv Recycling 2004;41(4):255–78. 链接1

[19] Lew RR. How does a hypha grow? The biophysics of pressurized growth in fungi. Nat Rev Microbiol 2011;9(7):509–18. 链接1

[20] Bigall NC, Reitzig M, Naumann W, Simon P, van Pée KH, Eychmüller A. Fungal templates for noble-metal nanoparticles and their application in catalysis. Angew Chem Int Ed Engl 2008;47(41):7876–9. 链接1

[21] Deng S, Ting YP. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms. Environ Sci Technol 2005;39(21):8490–6. 链接1

[22] Zhang L, Wang Y, Peng B, Yu W, Wang H, Wang T, et al. Preparation of a macroscopic, robust carbon-fiber monolith from filamentous fungi and its application in Li–S batteries. Green Chem 2014;16(8):3926–34. 链接1

[23] Haneef M, Ceseracciu L, Canale C, Bayer IS, Heredia-Guerrero JA, Athanassiou A. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci Rep 2017;7(1):41292–302. 链接1

[24] Wang L, Zhang L, Li A. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: influence of operating conditions and the process energetics. Water Res 2014;65:85–97. 链接1

[25] Wang L, Li A, Chang Y. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: heavy metals, volatile organic compounds and combustion characteristics of hydrochar. Chem Eng J 2016;297:1–10. 链接1

[26] Barber WPF. Thermal hydrolysis for sewage treatment: a critical review. Water Res 2016;104:53–71. 链接1

[27] To VHP, Nguyen TV, Vigneswaran S, Ngo HH. A review on sludge dewatering indices. Water Sci Technol 2016;74(1):1–16. 链接1

[28] American Public Health Association, American Water Work Association, Water Environment Federation. Standard methods for the examination of water and wastewater. 20th Edition. Washington, DC: American Public Health Association; 1998.

[29] DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem 1956;28(3):350–6. 链接1

[30] Hartree EF. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 1972;48(2):422–7. 链接1

[31] Liang J, Lin Y, Wu S, Liu C, Lei M, Zeng C. Enhancing the quality of bio-oil and selectivity of phenols compounds from pyrolysis of anaerobic digested rice straw. Bioresour Technol 2015;181:220–3. 链接1

[32] Morgan-Sagastume F, Pratt S, Karlsson A, Cirne D, Lant P, Werker A. Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants. Bioresour Technol 2011;102(3):3089–97. 链接1

[33] Graja S, Chauzy J, Fernandes P, Patria L, Cretenot D. Reduction of sludge production from WWTP using thermal pretreatment and enhanced anaerobic methanisation. Water Sci Technol 2005;52(1–2):267–73. 链接1

[34] Brooks RB. Heat treatment of activated sludge. Water Pollut Control 1968;67:592–601. 链接1

[35] Li L, Pang H, He J, Zhang J. Characterization of phosphorus species distribution in waste activated sludge after anaerobic digestion and chemical precipitation with Fe3+ and Mg2+. Chem Eng J 2019;373:1279–85. 链接1

[36] Braguglia CM, Gianico A, Gallipoli A, Mininni G. The impact of sludge pretreatments on mesophilic and thermophilic anaerobic digestion efficiency: role of the organic load. Chem Eng J 2015;270:362–71. 链接1

[37] Suárez-Iglesias O, Urrea JL, Oulego P, Collado S, Díaz M. Valuable compounds from sewage sludge by thermal hydrolysis and wet oxidation. A review. Sci Total Environ 2017;584–585:921–34. 链接1

[38] Plaza C, Brunetti G, Senesi N, Polo A. Molecular and quantitative analysis of metal ion binding to humic acids from sewage sludge and sludgeamended soils by fluorescence spectroscopy. Environ Sci Technol 2006;40 (3):917–23. 链接1

[39] Vardon DR, Sharma BK, Scott J, Yu G, Wang Z, Schideman L, et al. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresour Technol 2011;102(17):8295–303. 链接1

[40] He C, Giannis A, Wang JY. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior. Appl Energy 2013;111:257–66. 链接1

[41] Xu Q, Qian Q, Quek A, Ai N, Zeng G, Wang J. Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars. ACS Sustain Chem Eng 2013;1(9):1092–101. 链接1

[42] Funke A, Ziegler F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin 2010;4(2):160–77. 链接1

[43] Liang J, Chen J, Wu S, Liu C, Lei M. Comprehensive insights into cellulose structure evolution via multi-perspective analysis during a slow pyrolysis process. Sustain Energy Fuels 2018;2(8):1855–62. 链接1

[44] Mursito AT, Hirajima T, Sasaki K. Upgrading and dewatering of raw tropical peat by hydrothermal treatment. Fuel 2010;89(3):635–41. 链接1

[45] Smidt E, Meissl K. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag 2007;27(2):268–76. 链接1

[46] Wang X, Andrade N, Shekarchi J, Fischer SJ, Torrents A, Ramirez M. Full scale study of Class A biosolids produced by thermal hydrolysis pretreatment and anaerobic digestion. Waste Manag 2018;78:43–50. 链接1

[47] Xue Y, Liu H, Chen S, Dichtl N, Dai X, Li N. Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge. Chem Eng J 2015;264:174–80. 链接1

[48] Yang D, Dai X, Song L, Dai L, Dong B. Effects of stepwise thermal hydrolysis and solid–liquid separation on three different sludge organic matter solubilization and biodegradability. Bioresour Technol 2019;290:121753. 链接1

相关研究