期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第1期 doi: 10.1016/j.eng.2020.11.001

聚乙烯胺促进传递膜用于燃烧后二氧化碳捕集——从材料到工艺的挑战和前景

a Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim N-7491, Norway
b Department of Chemical Engineering, Guangdong Technion Israel Institute of Technology (GTIIT), Shantou 515063, China

收稿日期: 2019-05-26 修回日期: 2019-10-29 录用日期: 2019-11-19 发布日期: 2020-11-13

下一篇 上一篇

摘要

由于气体分离膜具有高能效、相对较低的成本和环境影响,通过气体分离膜捕集二氧化碳(CO2)变得越来越具有吸引力。在过去的十年中,人们开发了基于聚乙烯胺(PVAm)的促进传递(FT)膜来捕集CO2。本文讨论了聚乙烯胺促进传递膜应用于发电厂和水泥厂的燃烧后CO2捕集从材料到工艺的挑战。我们可以基于先前中试示范中获得的经验来指导设计其他类型的膜捕集CO2。特别强调了组件和工艺设计对实现高性能膜系统的重要性。此外,过程模拟和成本估算的结果表明,三级膜系统对于实现95%的高CO2纯度是可行的。我们发现单位CO2的捕集成本在很大程度上取决于所需的CO2捕集率,在50%的中等CO2捕集率下,捕集每吨CO2的成本为63.7美元。因此,我们发现FT膜系统对于部分CO2捕集更具竞争力。

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] He X. A review of material development in the field of carbon capture and the application of membrane-based processes in power plants and energyintensive industries. Energy Sustain Soc 2018;8(1):34. 链接1

[ 2 ] He X, Yu Q, Hägg MB. CO2 capture. In: Hoek EMV, Tarabara VV, editors. Encyclopedia of membrane science and technology. Hoboken: John Wiley & Sons, Inc.; 2013. p. 1–29. 链接1

[ 3 ] Anselmi H, Mirgaux O, Bounaceur R, Patisson F. Simulation of post-combustion CO2 capture, a comparison among absorption, adsorption and membranes. Appl Phys Lett 2019;42(4):797–804. 链接1

[ 4 ] Aghaie M, Rezaei N, Zendehboudi S. A systematic review on CO2 capture with ionic liquids: current status and future prospects. Renew Sustain Energy Rev 2018;96:502–25. 链接1

[ 5 ] Anthony JL, Maginn EJ, Brennecke JF. Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B 2002;106(29):7315–20. 链接1

[ 6 ] Trickett CA, Helal A, Al-Maythalony BA, Yamani ZH, Cordova KE, Yaghi OM. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat Rev Mater 2017;2(8):17045. 链接1

[ 7 ] Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, et al. Carbon dioxide capture in metal–organic frameworks. Chem Rev 2012;112 (2):724–81. 链接1

[ 8 ] Kazemi S, Safarifard V. Carbon dioxide capture in MOFs: the effect of ligand functionalization. Polyhedron 2018;154:236–51. 链接1

[ 9 ] Li J, Zhang H, Gao Z, Fu J, Ao W, Dai J. CO2 capture with chemical looping combustion of gaseous fuels: an overview. Energy Fuels 2017;31(4):3475–524. 链接1

[10] Mantripragada HC, Rubin ES. Chemical looping for pre-combustion and postcombustion CO2 capture. Energy Procedia 2017;114:6403–10. 链接1

[11] Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R. Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res 2012;51 (4):1438–63. 链接1

[12] He X. Membranes for natural gas sweetening. In: Drioli E, Giorno L, editors. Encyclopedia of membranes. Berlin: Springer; 2016. p. 1266–7. 链接1

[13] Roussanaly S, Anantharaman R, Lindqvist K, Zhai H, Rubin E. Membrane properties required for post-combustion CO2 capture at coal-fired power plants. J Membr Sci 2016;511:250–64. 链接1

[14] Khalilpour R, Mumford K, Zhai H, Abbas A, Stevens G, Rubin ES. Membranebased carbon capture from flue gas: a review. J Clean Prod 2015;103:286–300. 链接1

[15] Prasetya N, Donose BC, Ladewig BP. A new and highly robust light-responsive Azo-UiO-66 for highly selective and low energy post-combustion CO2 capture and its application in a mixed matrix membrane for CO2/N2 separation. J Mater Chem A 2018;6(34):16390–402. 链接1

[16] Merkel TC, Wei X, He Z, White LS, Wijmans JG, Baker RW. Selective exhaust gas recycle with membranes for CO2 capture from natural gas combined cycle power plants. Ind Eng Chem Res 2013;52(3):1150–9. 链接1

[17] He X, Lindbråthen A, Kim TJ, Hägg MB. Pilot testing on fixed-site-carrier membranes for CO2 capture from flue gas. IJGGC 2017;64:323–32. 链接1

[18] Pohlmann J, Bram M, Wilkner K, Brinkmann T. Pilot scale separation of CO2 from power plant flue gases by membrane technology. IJGGC 2016;53:56–64. 链接1

[19] Kim TJ, Vrålstad H, Sandru M, Hägg MB. Separation performance of PVAm composite membrane for CO2 capture at various pH levels. J Membr Sci 2013;428:218–24. 链接1

[20] Deng L, Kim TJ, Hägg MB. Facilitated transport of CO2 in novel PVAm/PVA blend membrane. J Membr Sci 2009;340(1–2):154–63. 链接1

[21] Tong Z, Ho WSW. Facilitated transport membranes for CO2 separation and capture. Sep Sci Technol 2017;52(2):156–67. 链接1

[22] Qiao Z, Zhao S, Sheng M, Wang J, Wang S, Wang Z, et al. Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes. Nat Mater 2019;18(2):163–8. 链接1

[23] Tong Z, Ho WSW. New sterically hindered polyvinylamine membranes for CO2 separation and capture. J Membr Sci 2017;543:202–11. 链接1

[24] Shen Y, Wang H, Liu J, Zhang Y. Enhanced performance of a novel polyvinyl amine/chitosan/graphene oxide mixed matrix membrane for CO2 capture. ACS Sustain Chem Eng 2015;3(8):1819–29. 链接1

[25] Taniguchi I, Kinugasa K, Toyoda M, Minezaki K. Effect of amine structure on CO2 capture by polymeric membranes. Sci Technol Adv Mater 2017;18(1):950–8. 链接1

[26] Kim TJ, Li B, Hägg MB. Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture. J Polym Sci B 2004;42(23):4326–36. 链接1

[27] Sandru M, Kim TJ, Capala W, Huijbers M, Hägg MB. Pilot scale testing of polymeric membranes for CO2 capture from coal fired power plants. Energy Procedia 2013;37:6473–80. 链接1

[28] Hägg MB, He X, Sarfaraz V, Sandru M, Kim TJ. CO2 capture using a membrane pilot process at cement factory. In: Proceedings of the 8th Trondheim CCS Conference; 2015 Jun 16–18; Trondheim, Norway; 2015. 链接1

[29] Hägg MB, Lindbråthen A, He X, Nodeland SG, Cantero T. Pilot demonstrationreporting on CO2 capture from a cement plant using hollow fiber process. Energy Procedia 2017;114:6150–65. 链接1

[30] Chu Y, Lindbråthen A, Lei L, He X, Hillestad M. Mathematical modeling and process parametric study of CO2 removal from natural gas by hollow fiber membranes. Chem Eng Res Des 2019;148:45–55. 链接1

[31] Han Y, Wu D, Ho WSW. Simultaneous effects of temperature and vacuum and feed pressures on facilitated transport membrane for CO2/N2 separation. J Membr Sci 2019;573:476–84. 链接1

[32] Han Y, Salim W, Chen KK, Wu D, Ho WSW. Field trial of spiral-wound facilitated transport membrane module for CO2 capture from flue gas. J Membr Sci 2019;575:242–51. 链接1

[33] Hägg MB, Kim TJ, Li B, inventors. Membrane for separating CO2 and process for the production thereof. WIPO patent WO 2005089907A1. 2005 Sep 29.

[34] Deng L. Development of novel PVAm/PVA blend FSC membrane for CO2 capture [dissertation]. Trondheim: Norwegian University of Science and Technology; 2009. 链接1

[35] He X, Fu C, Hägg MB. Membrane system design and process feasibility analysis for CO2 capture from flue gas with a fixed-site-carrier membrane. Chem Eng J 2015;268:1–9. 链接1

[36] Robeson LM. The upper bound revisited. J Membr Sci 2008;320(1–2):390–400. 链接1

[37] Roussanaly S, Anantharaman R. Cost-optimal CO2 capture ratio for membranebased capture from different CO2 sources. Chem Eng J 2017;327:618–28. 链接1

[38] Grainger D. Development of carbon membranes for hydrogen recovery [dissertation]. Trondheim: Norwegian University of Science and technology; 2007. 链接1

[39] Turton R, Bailie RC, Whiting WB, Shaeiwitz JA, Bhattacharyya D. Analysis, synthesis, and design of chemical processes. 4th ed. New Jersy: Pearson Education; 2013. 链接1

[40] He X, Hägg MB. Energy efficient process for CO2 capture from flue gas with novel fixed-site-carrier membranes. Energy Procedia 2014;63:174–85. 链接1

[41] Hussain A, Farrukh S, Minhas FT. Two-stage membrane system for postcombustion CO2 capture application. Energy Fuels 2015;29(10):6664–9. 链接1

相关研究