期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第6期 doi: 10.1016/j.eng.2020.12.021

基于5G车用无线通信技术网络的工业园区多层协同框架

a Department of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
b Department of Electrical and Computer Engineering, Western University, London, ON N6A 3K7, Canada
c State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

收稿日期 :2020-06-13 修回日期 :2020-11-17 录用日期 : 2020-12-07 发布日期 :2021-03-19

下一篇 上一篇

摘要

第五代(5G)无线通信网络有望在垂直产业转型中发挥重要的作用。在众多激动人心的5G应用中,通过车用无线通信技术(V2X)通信可更高效地执行工业园区内的物流任务。本文提出了一种基于V2X的工业园区物流管理多层协同框架。该框架包括三层:感知与执行层、物流层以及配置层。除以上三层之间的协同外,本研究还讨论了设备、边缘服务器以及云服务之间的协同。针对工业园区内的高效物流,可通过四项功能来实现任务协同,这四项功能分别是:环境感知与地图构建、任务分配、路径规划,以及车辆运动。为动态协调这些功能,将采用5G切片和V2X通信技术支持的设备边云协同。随后,利用目标级联分析法对工业园区协同方案进行配置和评估。最后,通过一工业园区物流分析案例,验证了所提出协同框架的可行性。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

参考文献

[1]  Qiu X, Luo H, Xu G, Zhong R, Huang GQ. Physical assets and service sharing for IoT-enabled Supply Hub in Industrial Park (SHIP). Int J Prod Econ 2015;159:4–15. 链接1

[2]  Qiu X, Huang GQ, Lam JSL. A bilevel analytical model for dynamic storage pricing in a Supply Hub in Industrial Park (SHIP). IEEE Trans Autom Sci Eng 2015;12(3):1017–32. 链接1

[3]  Feng J, Li F, Xu C, Zhong RY. Data-driven analysis for RFID-enabled smart factory: a case study. IEEE Trans Syst Man Cybern Syst 2020;50(1):81–8. 链接1

[4]  Yu W, Liang F, He X, Hatcher WG, Lu C, Lin J, et al. A survey on the edge computing for the Internet of Things. IEEE Access 2018;6:6900–19. 链接1

[5]  Satyanarayanan M. The emergence of edge computing. Computer 2017;50 (1):30–9. 链接1

[6]  Mao Y, You C, Zhang J, Huang K, Letaief KB. A survey on mobile edge computing: the communication perspective. IEEE Commun Surv Tut 2017;19 (4):2322–58. 链接1

[7]  Ha K, Chen Z, Hu W, Richter W, Pillai P, Satyanarayanan M. Towards wearable cognitive assistance. In: Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services; 2014 Jun 16–19; Bretton Woods, NH, USA; 2014. p. 68–81.

[8]  Zhao Z, Lin P, Shen L, Zhang M, Huang GQ. IoT edge computing-enabled collaborative tracking system for manufacturing resources in industrial park. Adv Eng Inform 2020;43:101044. 链接1

[9]  Qi B, Xia Y, Li B, Shi K, Xue M. Family energy management system based on edge computing: architecture, key technology and implementation. Electr Power Constr 2018;39(3):33–41. 链接1

[10]  Lin W, Sharma P, Chatterjee S, Sharma D, Lee D, Iyer S, et al. Scaling persistent connections for cloud services. Comput Netw 2015;93:518–30. 链接1

[11]  Chen Y. Integrated and intelligent manufacturing: perspectives and enablers. Engineering 2017;3(5):588–95. 链接1

[12]  Lv L, Shi Y, Shen W. Mobility-as-a-service research trends of 5G-based vehicle platooning. Serv Oriented Comput Appl 2021;15(1):1–3.

[13]  Shi Y, Lin N, Han Q, Zhang T, Shen W. A method for transportation planning and profit sharing in collaborative multi-carrier vehicle routing. Mathematics 2020;8(10):1788. 链接1

[14]  Pocovi G, Shariatmadari H, Berardinelli G, Pedersen K, Steiner J, Li Z. Achieving ultra-reliable low-latency communications: challenges and envisioned system enhancements. IEEE Network 2018;32(2):8–15. 链接1

[15]  Guevara L, Cheein FA. The role of 5G technologies: challenges in smart cities and intelligent transportation systems. Sustainability 2020;12(16):6469. 链接1

[16]  Sawanobori TK. The next generation of wireless: 5G leadership in the US Washington [presentation]. In: CTIA EverythingWireless; 2016 Feb 9; Washington, DC, USA; 2016.

[17]  Campolo C, Molinaro A, Iera A, Menichella F. 5G network slicing for vehicle-toeverything services. IEEE Wirel Commun 2017;24(6):38–45. 链接1

[18]  Shi Y, Han Q, Shen W, Zhang H. Potential applications of 5G communication technologies in collaborative intelligent manufacturing. IET Collab Intell Manuf 2019;1(4):109–16. 链接1

[19]  Zhong RY, Xu X, Klotz E, Newman ST. Intelligent manufacturing in the context of Industry 4.0: a review. Engineering 2017;3(5):616–30. 链接1

[20]  Kumar PM, Gandhi UD, Manogaran G, Sundarasekar R, Chilamkurti N, Varatharajan R. Ant colony optimization algorithm with Internet of Vehicles for intelligent traffic control system. Comput Netw 2018;144:154–62. 链接1

[21]  Tolba A. Content accessibility preference approach for improving service optimality in internet of vehicles. Comput Netw 2019;152:78–86. 链接1

[22]  Akpakwu GA, Silva BJ, Hancke GP, Abu-Mahfouz AM. A survey on 5G networks for the Internet of Things: communication technologies and challenges. IEEE Access 2018;6:3619–47. 链接1

[23]  Butt TA, Iqbal R, Shah SC, Umar T. Social Internet of Vehicles: architecture and enabling technologies. Comput Electr Eng 2018;69:68–84. 链接1

[24]  Li W, Xiao M, Yi Y, Gao L. Maximum variation analysis based analytical target cascading for multidisciplinary robust design optimization under interval uncertainty. Adv Eng Inform 2019;40:81–92. 链接1

[25]  Rawat DB, Alsabet R, Bajracharya C, Song M. On the performance of cognitive Internet-of-Vehicles with unlicensed user-mobility and licensed user-activity. Comput Netw 2018;137:98–106. 链接1

[26]  3rd Generation Partnership Project; technical specification group services and system aspects; release 16 description. Report. Valbonne: 3GPP Support Office; 2020.

[27]  Abdel Hakeem SA, Hady AA, Kim HW. 5G–V2X: standardization, architecture, use cases, network-slicing, and edge-computing. Wirel Netw 2020;26 (8):6015–41. 链接1

[28]  Casas P, Schatz R. Quality of experience in cloud services: survey and measurements. Comput Netw 2014;68:149–65. 链接1

[29]  Selimi M, Khan AM, Dimogerontakis E, Freitag F, Centelles RP. Cloud services in the Guifi.net community network. Comput Netw 2015;93:373–88. 链接1

[30]  Schreiber M, Knöppel C, Franke U. LaneLoc: lane marking based localization using highly accurate maps. In: Proceedings of 2013 IEEE Intelligent Vehicles Symposium (IV); 2013 Jun 23–26; Gold Coast, QLD, Australia; 2013. p. 449–54.

[31]  Liu Z, Yu S, Zheng N. A co-point mapping-based approach to drivable area detection for self-driving cars. Engineering 2018;4(4):479–90. 链接1

[32]  Xu X, Hao J, Yu L, Deng Y. Fuzzy optimal allocation model for task–resource assignment problem in a collaborative logistics network. IEEE Trans Fuzzy Syst 2019;27(5):1112–25. 链接1

[33]  Shriyam S, Gupta SK. Incorporation of contingency tasks in task allocation for multirobot teams. IEEE Trans Autom Sci Eng 2020;17(2):809–22. 链接1

[34]  Ma H, Koenig S. AI Buzzwords explained: multi-agent path finding (MAPF). AI Matters 2017;3(3):15–9. 链接1

[35]  Hönig W, Kumar TKS, Cohen L, Ma H, Xu H, Ayanian N, et al. Multi-agent path finding with kinematic constraints. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence; 2017 Aug 19–25; Melbourne, VIC, Australia; 2017. p. 4869–73.

[36]  Shen W, Wang L, Hao Q. Agent-based distributed manufacturing process planning and scheduling: a state-of-the-art survey. IEEE Trans Syst Man Cybern C 2006;36(4):563–77. 链接1

[37]  Goldenberg M, Felner A, Stern R, Sharon G, Sturtevant N, Holte RC, et al. Enhanced partial expansion A*. J Artif Intell Res 2014;50:141–87. 链接1

[38]  Wagner G, Choset H. Subdimensional expansion for multirobot path planning. Artif Intell 2015;219:1–24. 链接1

[39]  Sharon G, Stern R, Goldenberg M, Felner A. The increasing cost tree search for optimal multi-agent pathfinding. Artif Intell 2013;195:470–95. 链接1

[40]  Sharon G, Stern R, Felner A, Sturtevant NR. Conflict-based search for optimal multi-agent pathfinding. Artif Intell 2015;219:40–66. 链接1

[41]  Jiang K, Yang D, Liu C, Zhang T, Xiao Z. A flexible multi-layer map model designed for lane-level route planning in autonomous vehicles. Engineering 2019;5(2):305–18. 链接1

[42]  Talgorn B, Kokkolaras M. Compact implementation of non-hierarchical analytical target cascading for coordinating distributed multidisciplinary design optimization problems. Struct Multidiscipl Optim 2017;56 (6):1597–602. 链接1

[43]  Guarneri P, Leverenz JT, Wiecek MM, Fadel G. Optimization of nonhierarchically decomposed problems. J Comput Appl Math 2013;246:312–9. 链接1

[44]  Ghosh S, Mavris DN. A methodology for probabilistic analysis of distributed multidisciplinary architecture (PADMA). In: Proceeding of 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference; 2016 Jun 13–17; Wahington, DC, USA; 2016. p. 3210.

相关研究