期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第3期 doi: 10.1016/j.eng.2021.01.006

现代混凝土收缩开裂的评估方法与控制关键技术

a College of Materials Science and Engineering, Southeast University, Nanjing 211189, China
b State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute of Building Science Co., Ltd., Nanjing 211103, China

收稿日期: 2020-06-28 修回日期: 2020-11-16 录用日期: 2021-01-11 发布日期: 2021-02-10

下一篇 上一篇

摘要

现代混凝土组成日趋复杂、收缩加大、结构约束增强,导致收缩开裂问题突出,严重影响构筑物的服役性能和使用寿命。本文以胶凝材料体系水化程度作为材料与环境温湿度交互作用的基本状态变量,提出了复杂胶凝材料体系水化反应活化能的计算方法,建立了水化-温度-湿度-约束耦合作用模型,实现了多种收缩的耦合计算和开裂风险的量化评估;介绍了水化温升抑制、全过程补偿收缩和化学减缩三项关键技术的作用机理及效果,这些技术能够有针对性地降低混凝土的温降收缩、自收缩和干燥收缩;在此基础上,提出了高抗裂混凝土的设计方法,采用该方法后,全过程控制开裂风险系数小于阈值;最后介绍了典型的工程应用案例,结果表明,采用所提出的方法和技术能够显著抑制甚至避免实际工程中收缩裂缝的产生。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

参考文献

[ 1 ] Leemann A, Lura P, Loser R. Shrinkage and creep of SCC—the influence of paste volume and binder composition. Constr Build Mater 2011;25(5):2283–9. 链接1

[ 2 ] Wang TM. Control of cracking in engineering structure. Beijing: China Architecture & Building Press; 1997. Chinese. 链接1

[ 3 ] Wang K, Jansen D, Shah SP, Karr A. Permeability study of cracked concrete. Cement Concr Res 1997;27(3):381–93. 链接1

[ 4 ] Mehta PK. Concrete technology at the crossroads—problems and opportunities. ACI SP 1994;144:1–30. 链接1

[ 5 ] Mehta PK, Burrows RW. Building durable structures in the 21st century. Concr Int 2001;23(3):57–63. 链接1

[ 6 ] Kwak HG, Ha S, Weiss WJ. Experimental and numerical quantification of plastic settlement in fresh cementitious systems. J Mater Civ Eng 2010;22 (10):951–66. 链接1

[ 7 ] Liu J, Tian Q, Miao C. Investigation on the plastic shrinkage of cementitious materials under drying conditions: mechanism and theoretical model. Mag Concr Res 2012;64(6):551–61. 链接1

[ 8 ] Ghourchian S, Wyrzykowski M, Lura P. A poromechanics model for plastic shrinkage of fresh cementitious materials. Cement Concr Res 2018;109:120–32. 链接1

[ 9 ] Ghourchian S, Wyrzykowski M, Plamondon M, Lura P. On the mechanism of plastic shrinkage cracking in fresh cementitious materials. Cement Concr Res 2019;115:251–63. 链接1

[10] ASTM C1698-09. Standard test method for autogenous strain of cement paste and mortar. ASTM standards. West Conshohocken: ASTM International; 2019.

[11] Gawin D, Pesavento F, Schrefler BA. Hygro–thermo–chemo–mechanical modelling of concrete at early ages and beyond. Part I: hydration and hygrothermal phenomena, Part II: shrinkage and creep of concrete. Int J Numer Methods Eng 2006;67(3):332–63. 链接1

[12] Zhu BF. Thermal stresses and temperature control of mass concrete. Beijing: China Electric Power Press; 1999. Chinese. 链接1

[13] Koenders E, van Breugel K. Modeling moisture transport processes in cement paste systems. In: Proceedings of the fib Symposium; 2014 Apr 26–28; Avignon, France; 2004.

[14] Maruyama I, Lura P. Properties of early-age concrete relevant to cracking in massive concrete. Cement Concr Res 2019;123:105770. 链接1

[15] Li H, Tian Q, Zhao H, Lu A, Liu J. Temperature sensitivity of MgO expansive agent and its application in temperature crack mitigation in shiplock mass concrete. Constr Build Mater 2018;170:613–8. 链接1

[16] Tian Q, Li H, Wang W, Liu J, Miao C. Cracking inhibiting for underground sidewall structure based on dual-regulation technology of temperature field and expansion history. In: Proceedings of the fib Symposium; 2015 May 18– 20. Denmark: Copenhagen; 2015. 链接1

[17] Mo L, Fang J, Huang B, Wang A, Deng M. Combined effects of biochar and MgO expansive additive on the autogenous shrinkage, internal relative humidity and compressive strength of cement pastes. Constr Build Mater 2019;229:116877. 链接1

[18] Schindler AK. Effect of temperature on hydration of cementitious materials. Mater J 2004;101(1):72–81. 链接1

[19] Cervera M, Oliver J, Prato T. Thermo–chemo–mechanical model for concrete I: hydration and aging. J Eng Mech 1999;125(9):1018–27. 链接1

[20] Wyrzykowski M, Lura P. Effect of relative humidity decrease due to selfdesiccation on the hydration kinetics of cement. Cement Concr Res 2016;85:75–81. 链接1

[21] Bazˇant ZP, Najjar LJ. Nonlinear water diffusion in nonsaturated concrete. Mater Struct 1972;5:3–20. 链接1

[22] Schindler AK, Folliard KJ. Heat of hydration models for cementitious materials. Mater J 2005;102(1):24–33. 链接1

[23] Liu JP, Tian Q, Sun W, Miao CW, Tang MS. Study on the self-desiccation effect in early-age concrete and the determination of ‘‘time-zero” of self-desiccation shrinkage. In: Proceedings of the International RILEM Conference on Volume Changes of Hardening Concrete: Testing and Mitigation; 2006 Aug 20– 23. Denmark: Lyngby; 2006. 链接1

[24] Ruiz J, Schindler A, Rasmussen R, Kim P, Chang G. Concrete temperature modeling and strength prediction using maturity concepts. In: Proceedings of the 7th International Conference on Concrete Pavements; 2001 Sep 9– 13. USA: Orlando, FL; 2001. 链接1

[25] Gawin D, Pesavento F, Schrefler BA. Hygro–thermo–chemo–mechanical modelling of concrete at early ages and beyond. Part I: hydration and hygro–thermal phenomena. Int J Numer Methods Eng 2006;67(3):299–331. 链接1

[26] Hu Z, Hilaire A, Wyrzykowski M, Lura P, Scrivener K. Visco-elastic behavior of blended cement pastes at early ages. Cement Concr Compos 2020;107:103497. 链接1

[27] Bentz DP, Garboczi EJ, Quenard DA. Modelling drying shrinkage in reconstructed porous materials: application to porous Vycor glass. Model Simul Mater Sci Eng 1998;6(3):211–36. 链接1

[28] Lura P, Jensen OM, van Breugel K. Autogenous shrinkage in high-performance cement paste: an evaluation of basic mechanisms. Cement Concr Res 2003;33 (2):223–32. 链接1

[29] Zhang J, Hou D, Han Y. Micromechanical modeling on autogenous and drying shrinkages of concrete. Constr Build Mater 2012;29:230–40. 链接1

[30] Bella CD, Wyrzykowski M, Lura P. Evaluation of the ultimate drying shrinkage of cement-based mortars with poroelastic models. Mater Struct 2017;50:52. 链接1

[31] Espinosa RM, Franke L. Influence of the age and drying process on pore structure and sorption isotherms of hardened cement paste. Cement Concr Res 2006;36(10):1969–84. 链接1

[32] De Schutter G, Taerwe L. Degree of hydration-based description of mechanical properties of early age concrete. Mater Struct 1996;29(6): 335–44. 链接1

[33] Li H, Liu J, Wang Y, Yao T, Tian Q, Li S. Deformation and cracking modeling for early-age sidewall concrete based on the multi-field coupling mechanism. Constr Build Mater 2015;88:84–93. 链接1

[34] Bazˇant ZP, Prasannan S. Solidification theory for concrete creep. I: formulation. II: verification and application. J Eng Mech 1989;115(8):1691–725. 链接1

[35] De Schutter G. Degree of hydration based Kelvin model for the basic creep of early age concrete. Mater Struct 1999;32(4):260–5. 链接1

[36] Hilaire A, Benboudjema F, Darquennes A, Berthaud Y, Nahas G. Modeling basic creep in concrete at early-age under compressive and tensile loading. Nucl Eng Des 2014;269:222–30. 链接1

[37] Hohai University, Wuhan University, Dalian University of Technology, Zhengzhou University. Hydraulic reinforced concrete structure. Beijing: China Water & Power Press; 1996. Chinese.

[38] Department of Mathematics, Tongji University. Probability and statistics. Beijing: Posts & Telecom Press; 2017. Chinese.

[39] Zhang H, Wang W, Li L, Liu J. Starch-assisted synthesis and characterization of layered calcium hydroxide particles. J Inorg Organomet Polym Mater 2018;28 (6):2399–406. 链接1

[40] Zhang H, Li L, Feng P, Wang W, Tian Q, Liu J. Impact of temperature rising inhibitor on hydration kinetics of cement paste and its mechanism. Cement Concr Compos 2018;93:289–300. 链接1

[41] Yan Y, Ouzia A, Yu C, Liu J, Scrivener KL. Effect of a novel starch-based temperature rise inhibitor on cement hydration and microstructure development. Cement Concr Res 2020;129:105961. 链接1

[42] Lu A, Li H, Wang Y, Tian Q. Effects of temperature history on expansion properties of CaO- and MgO-bearing expansive agent for concrete. In: Proceedings of the 1st International Innovation in Low-Carbon Cement & Concrete Technology; 2019 Jun 24–26. UK: London; 2019. 链接1

[43] Rajabipour F, Sant G, Weiss J. Interactions between shrinkage reducing admixtures (SRA) and cement paste’s pore solution. Cement Concr Res 2008;38(5):606–15. 链接1

[44] Sant G, Lothenbach B, Juilland P, Le Saout G, Weiss J, Scrivener K. The origin of early age expansions induced in cementitious materials containing shrinkage reducing admixtures. Cement Concr Res 2011;41(3):218–29. 链接1

[45] Sant G, Rajabipour F, Lura P, Weiss J. Examining time-zero and early age expansion in pastes containing shrinkage reducing admixtures (SRAs). In: Proceedings of the 2nd International RILEM Symposium on Advances in Concrete through Science and Engineering; 2006 Sep 11–13. Canada: Quebec City, QC; 2006. 链接1

[46] Zuo W, Feng P, Zhong P, Tian Q, Gao N, Wang Y, et al. Effects of novel polymertype shrinkage-reducing admixture on early age autogenous deformation of cement pastes. Cement Concr Res 2017;100(8):413–22. 链接1

相关研究