期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第10期 doi: 10.1016/j.eng.2021.01.014

外周血免疫特征预测肝内胆管癌患者化疗敏感性

a International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China
b National Center for Liver Cancer, Shanghai 201805, China
c Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
d Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
e Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200433, China
f Department of Laboratory Medicine, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072, China
g Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai 200438, China
h Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
i Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai 200438, China

收稿日期: 2020-05-25 修回日期: 2020-11-27 录用日期: 2021-01-21

下一篇 上一篇

摘要

肝内胆管癌(ICC)是第二常见肝癌。化疗仍然是晚期ICC患者的主要治疗方法,但是化疗敏感性因人而异。在本研究中,我们使用飞行时间质谱仪(CyTOF)在单细胞水平上建立ICC患者在化疗前、化疗中和化疗后指定时间点外周血单核细胞(PBMC)的免疫谱;应用多重免疫荧光染色展现某些特定免疫亚群的空间分布;使用组织微阵列(TMA)评估患者预后。本研究共招募了20名接受吉西他滨(GEM)治疗的ICC患者,其中8例对化疗反应良好(R),12例无反应(NR)。我们观察到化疗后患者PBMC组成发生了巨大变化,比如CD4/CD8 双阳性T细胞(DPT)水平增加。治疗前CD4+CD45RO+CXCR3+T细胞水平较高的患者对化疗反应良好。我们的研究确定了T细胞亚群的百分比与患者化疗反应性之间存在正相关关系,这表明通过评估PBMC中细胞亚群的比例来预测ICC患者化疗反应性是可行的。

补充材料

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Bridgewater J, Galle PR, Khan SA, Llovet JM, Park JW, Patel T, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol 2014;60(6):1268–89. 链接1

[ 2 ] Endo I, Gonen M, Yopp AC, Dalal KM, Zhou Q, Klimstra D, et al. Intrahepatic cholangiocarcinoma: rising frequency, improved survival, and determinants of outcome after resection. Ann Surg 2008;248(1):84–96. 链接1

[ 3 ] El-Diwany R, Pawlik TM, Ejaz A. Intrahepatic cholangiocarcinoma. Surg Oncol Clin N Am 2019;28(4):587–99. 链接1

[ 4 ] Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet 2014;383(9935): 2168–79. 链接1

[ 5 ] Chew V, Lee YH, Pan Lu, Nasir NJM, Lim CJ, Chua C, et al. Immune activation underlies a sustained clinical response to yttrium-90 radioembolisation in hepatocellular carcinoma. Gut 2019;68(2):335–46. 链接1

[ 6 ] Shewach DS, Lawrence TS. Gemcitabine and radiosensitization in human tumor cells. Invest New Drugs 1996;14(3):257–63. 链接1

[ 7 ] Nezami N, Camacho JC, Kokabi N, El-Rayes BF, Kim HS. Phase Ib trial of gemcitabine with yttrium-90 in patients with hepatic metastasis of pancreatobiliary origin. J Gastrointest Oncol 2019;10(5):944–56. 链接1

[ 8 ] Lowery MA, Goff LW, Keenan BP, Jordan E, Wang R, Bocobo AG, et al. Secondline chemotherapy in advanced biliary cancers: a retrospective, multicenter analysis of outcomes. Cancer 2019;125(24):4426–34. 链接1

[ 9 ] Xie X, Ma L, Zhou Y, Shen W, Xu D, Dou J, et al. Polysaccharide enhanced NK cell cytotoxicity against pancreatic cancer via TLR4/MAPKs/NF-jB pathway in vitro/vivo. Carbohydr Polym 2019;225:115223. 链接1

[10] Mu XY, Wang RJ, Yao ZX, Zheng Z, Jiang JT, Tan MY, et al. RS 504393 inhibits M-MDSCs recruiting in immune microenvironment of bladder cancer after gemcitabine treatment. Mol Immunol 2019;109:140–8. 链接1

[11] Zhang LN, Xin T, Chen M, Gao P. Chemoresistance in mesenchymal lung cancer cells is correlated to high regulatory T cell presence in the tumor microenvironment. IUBMB Life 2019;71(7):986–91. 链接1

[12] Duan S, Wang P, Liu F, Huang H, An W, Pan S, et al. Novel immune-risk score of gastric cancer: a molecular prediction model combining the value of immunerisk status and chemosensitivity. Cancer Med 2019;8(5):2675–85. 链接1

[13] Givechian KB, Wnuk K, Garner C, Benz S, Garban H, Rabizadeh S, et al. Identification of an immune gene expression signature associated with favorable clinical features in Treg-enriched patient tumor samples. NPJ Genom Med 2018;3(1):14. 链接1

[14] Zheng B, Wang D, Qiu X, Luo G, Wu T, Yang S, et al. Trajectory and functional analysis of PD-1(high) CD4+ CD8+ T cells in hepatocellular carcinoma by singlecell cytometry and transcriptome sequencing. Adv Sci 2020;7(13):2000224. 链接1

[15] Yan Y, Cao S, Liu X, Harrington SM, Bindeman WE, Adjei AA, et al. CX3CR1 identifies PD-1 therapy-responsive CD8+ T cells that withstand chemotherapy during cancer chemoimmunotherapy. JCI Insight 2018;3(8):e97828. 链接1

[16] Ouyang H, Zhang L, Xie Z, Ma S. Long noncoding RNA MAFG-AS1 promotes proliferation, migration and invasion of hepatocellular carcinoma cells through downregulation of miR-6852. Exp Ther Med 2019;18(4):2547–53. 链接1

[17] Zhang Y, Xu J, Zhang N, Chen M, Wang H, Zhu D. Targeting the tumour immune microenvironment for cancer therapy in human gastrointestinal malignancies. Cancer Lett 2019;458:123–35. 链接1

[18] Cao Z, Ji J, Zhang C, Wang F, Xu H, Yu Y, et al. The preoperative neutrophil-tolymphocyte ratio is not a marker of prostate cancer characteristics but is an independent predictor of biochemical recurrence in patients receiving radical prostatectomy. Cancer Med 2019;8(3):1004–12. 链接1

[19] Hanoteau A, Newton JM, Krupar R, Huang C, Liu HC, Gaspero A, et al. Tumor microenvironment modulation enhances immunologic benefit of chemoradiotherapy. J Immunother Cancer 2019;7(1):10. 链接1

[20] Kostine M, Briaire-de Bruijn IH, Cleven AHG, Vervat C, Corver WE, Schilham MW, et al. Increased infiltration of M2-macrophages, T-cells and PD-L1 expression in high grade leiomyosarcomas supports immunotherapeutic strategies. OncoImmunology 2018;7(2):e1386828. 链接1

[21] Krupar R, Hautmann MG, Pathak RR, Varier I, McLaren C, Gaag D, et al. Immunometabolic determinants of chemoradiotherapy response and survival in head and neck squamous cell carcinoma. Am J Pathol 2018;188(1):72–83. 链接1

[22] Ganesan P, Mehra N, Joel A, Radhakrishnan V, Dhanushkodi M, Perumal Kalayarasi J, et al. Gemcitabine, vinorelbine and dexamethasone: a safe and effective regimen for treatment of relapsed/refractory Hodgkin’s lymphoma. Leuk Res 2019;84:106188. 链接1

[23] Zeng FL, Xiao Z, Wang CQ, Jiang Y, Shan JL, Hu SS, et al. Clinical efficacy and safety of synthetic thymic peptides with chemotherapy for non-small cell lung cancer in China: a systematic review and meta-analysis of 27 randomized controlled trials following the PRISMA guidelines. Int Immunopharmacol 2019;75:105747. 链接1

[24] Tucci ST, Kheirolomoom A, Ingham ES, Mahakian LM, Tam SM, Foiret J, et al. Tumor-specific delivery of gemcitabine with activatable liposomes. J Control Release 2019;309:277–88. 链接1

[25] Kettunen K, Boström PJ, Lamminen T, Heinosalo T, West G, Saarinen I, et al. Personalized drug sensitivity screening for bladder cancer using conditionally reprogrammed patient-derived cells. Eur Urol 2019;76(4):430–4. 链接1

[26] Kim JW, Lee KH, Kim JW, Suh KJ, Nam AR, Bang JH, et al. Enhanced antitumor effect of binimetinib in combination with capecitabine for biliary tract cancer patients with mutations in the RAS/RAF/MEK/ERK pathway: phase Ib study. Br J Cancer 2019;121(4):332–9. 链接1

[27] Ahn KS, O’Brien D, Kang YN, Mounajjed T, Kim YH, Kim TS, et al. Prognostic subclass of intrahepatic cholangiocarcinoma by integrative molecularclinical analysis and potential targeted approach. Hepatol Int 2019;13 (4):490–500. 链接1

[28] Schneible JD, Singhal A, Lilova RL, Hall CK, Grafmüller A, Menegatti S. Tailoring the chemical modification of chitosan hydrogels to fine tune the release of a synergistic combination of chemotherapeutics. Biomacromolecules 2019;20 (8):3126–41. 链接1

[29] Zhao P, Zhu D, Zhang Z, Han B, Gao D, Wei X, et al. Gemcitabine treatment enhanced the anti-tumor effect of cytokine induced killer cells by depletion of CD4+ CD25bri regulatory T cells. Immunol Lett 2017;181:36–44. 链接1

[30] Li Z, Wang C, Deng H, Wu J, Huang H, Sun R, et al. Robust photodynamic therapy using 5-ALA-incorporated nanocomplexes cures metastatic melanoma through priming of CD4+ CD8+ double positive T cells. Adv Sci 2019;6 (5):1802057. 链接1

[31] Kim R, Kawai A, Wakisaka M, Funaoka Y, Yasuda N, Hidaka M, et al. A potential role for peripheral natural killer cell activity induced by preoperative chemotherapy in breast cancer patients. Cancer Immunol Immunother 2019;68(4):577–85. 链接1

[32] Giraldo NA, Bolaños NI, Cuellar A, Guzman F, Uribe AM, Bedoya A, et al. Increased CD4+ /CD8+ double-positive T cells in chronic chagasic patients. PLoS Negl Trop Dis 2011;5:e1294. 链接1

[33] Minagawa A, Yoshikawa T, Yasukawa M, Hotta A, Kunitomo M, et al. Enhancing T cell receptor stability in rejuvenated iPSC-derived T cells improves their use in cancer immunotherapy. Cell Stem Cell 2018;23 (6):850–8.e4.

[34] Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 2014;32 (1):659–702. 链接1

[35] Chen YP, Wu HL, Boyé K, Pan CY, Chen YC, Pujol N, et al. Oligomerization state of CXCL4 chemokines regulates G protein-coupled receptor activation. ACS Chem Biol 2017;12(11):2767–78. 链接1

[36] Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L, Clark-Lewis I, et al. Chemokine receptor specific for IP10 and Mig: structure, function, and expression in activated T-lymphocytes. J Exp Med 1996;184(3):963–9. 链接1

[37] Luster AD, Leder P. IP-10, a-CXC-chemokine, elicits a potent thymusdependent antitumor response in vivo. J Exp Med 1993;178(3):1057–65. 链接1

[38] Mullins IM, Slingluff CL, Lee JK, Garbee CF, Shu J, Anderson SG, et al. CXC chemokine receptor 3 expression by activated CD8+ T cells is associated with survival in melanoma patients with stage III disease. Cancer Res 2004;64 (21):7697–701. 链接1

[39] Medler TR, Murugan D, Horton W, Kumar S, Cotechini T, Forsyth AM, et al. Complement C5a fosters squamous carcinogenesis and limits T cell response to chemotherapy. Cancer Cell 2018;34(4):561–78.e6. 链接1

[40] Thomas SN, Vokali E, Lund AW, Hubbell JA, Swartz MA. Targeting the tumordraining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 2014;35(2):814–24. 链接1

[41] Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK. A deep profiler’s guide to cytometry. Trends Immunol 2012;33(7):323–32. 链接1

[42] Wu T, Wu X, Wang HY, Chen L. Immune contexture defined by single cell technology for prognosis prediction and immunotherapy guidance in cancer. Cancer Commun 2019;39(1):21. 链接1

[43] Landhuis E. Single-cell approaches to immune profiling. Nature 2018;557 (7706):595–7. 链接1

[44] Atkuri KR, Stevens JC, Neubert H. Mass cytometry: a highly multiplexed singlecell technology for advancing drug development. Drug Metab Dispos 2015;43 (2):227–33. 链接1

相关研究