期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第5期 doi: 10.1016/j.eng.2021.02.008

一种通用的基于斯托克斯流的复杂流束轮廓工程方法

Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China

收稿日期: 2020-09-24 修回日期: 2020-11-09 录用日期: 2021-02-08 发布日期: 2021-04-09

下一篇 上一篇

摘要

为了在微流控管道中实现诸如混合强化、反应控制和材料合成等应用,经常需要编辑其中的流束轮廓。传统的流束轮廓编辑方法通过激发惯性二次流,使管道中流体重新分布,然而在惯性流可以忽略的微流控环境中,难以借助这类方法形成流束轮廓。传统方法使用的对称式管道内结构也限制了可以创造的流束轮廓的多样性。此外,这类方法生成的每个流束轮廓均对应一个严格定义的特定流动环境,因而在有变化的流动环境中,难以再现这些轮廓。为了解决上述问题,我们提出一种基于非惯性二次流的工程方法来编辑流束轮廓:在微管道内部署一系列级联的具有不同几何形状的阶梯来操控处于斯托克斯流范围内的流体;通过调整这些微阶梯的形状可以定制输出任意的流束轮廓;设计数值式流束轮廓预测程序,可快速预测以任意次序排列的预定义的微阶梯所输出的流束轮廓。该方法可用于生成包括非对称流束轮廓在内的各种稳定的流束轮廓,并且广泛适用于多种微流控流动环境,促进对复杂微流场的预测和设计。

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Cai QW, Ju XJ, Zhang SY, Chen ZH, Hu JQ, Zhang LP, et al. Controllable fabrication of functional microhelices with droplet microfluidics. ACS Appl Mater Interfaces 2019;11(49):46241–50. 链接1

[ 2 ] Geng Y, Ling SD, Huang J, Xu J. Multiphase microfluidics: fundamentals, fabrication, and functions. Small 2020;16(6):1906357. 链接1

[ 3 ] Stroock AD, Dertinger SK, Ajdari A, Mezic´ I, Stone HA, Whitesides GM. Chaotic mixer for microchannels. Science 2002;295(5555):647–51. 链接1

[ 4 ] Burns MA, Johnson BN, Brahmasandra SN, Handique K, Webster JR, Krishnan M, et al. An integrated nanoliter DNA analysis device. Science 1998;282 (5388):484–7. 链接1

[ 5 ] Simonnet C, Groisman A. Two-dimensional hydrodynamic focusing in a simple microfluidic device. Appl Phys Lett 2005;87(11):114104. 链接1

[ 6 ] Losey MW, Schmidt MA, Jensen KF. Microfabricated multiphase packed-bed reactors: characterization of mass transfer and reactions. Ind Eng Chem Res 2001;40(12):2555–62. 链接1

[ 7 ] Wang FJ, Huang JP, Xu JH. Continuous-flow synthesis of the azo pigment yellow 14 using a three-stream micromixing process. Org Process Res Dev 2019;23(12):2637–46. 链接1

[ 8 ] Chen D, Zhao CX, Lagoin C, Hai M, Arriaga LR, Koehler S, et al. Dispersing hydrophobic natural colourant b-carotene in shellac particles for enhanced stability and tunable colour. R Soc Open Sci 2017;4(12):170919. 链接1

[ 9 ] You JB, Kang K, Tran TT, Park H, Hwang WR, Kim JM, et al. PDMS-based turbulent microfluidic mixer. Lab Chip 2015;15(7):1727–35. 链接1

[10] Lim CY, Lam YC, Yang C. Mixing enhancement in microfluidic channel with a constriction under periodic electro-osmotic flow. Biomicrofluidics 2010;4 (1):014101. 链接1

[11] Lu LH, Ryu KS, Liu C. A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 2002;11(5):462–9. 链接1

[12] Williams MS, Longmuir KJ, Yager P. A practical guide to the staggered herringbone mixer. Lab Chip 2008;8(7):1121–9. 链接1

[13] Lin Y, Yu X, Wang Z, Tu ST, Wang Z. Design and evaluation of an easily fabricated micromixer with three-dimensional periodic perturbation. Chem Eng J 2011;171(1):291–300. 链接1

[14] Amini H, Sollier E, Weaver WM, Di Carlo D. Intrinsic particle-induced lateral transport in microchannels. Proc Natl Acad Sci USA 2012;109(29):11593–8. 链接1

[15] Lee MG, Choi S, Park JK. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device. Lab Chip 2009;9 (21):3155–60. 链接1

[16] Eluru G, Julius LAN, Gorthi SS. Single-layer microfluidic device to realize hydrodynamic 3D flow focusing. Lab Chip 2016;16(21):4133–41. 链接1

[17] Golden JP, Justin GA, Nasir M, Ligler FS. Hydrodynamic focusing—a versatile tool. Anal Bioanal Chem 2012;402(1):325–35. 链接1

[18] Hou K, Li Y, Liu Y, Zhang R, Hsiao BS, Zhu M. Continuous fabrication of cellulose nanocrystal/poly(ethylene glycol) diacrylate hydrogel fiber from nanocomposite dispersion: rheology, preparation and characterization. Polymer 2017;123:55–64. 链接1

[19] Paulsen KS, Di Carlo D, Chung AJ. Optofluidic fabrication for 3D-shaped particles. Nat Commun 2015;6:6976. 链接1

[20] Zhao X, Bian F, Sun L, Cai L, Li L, Zhao Y. Microfluidic generation of nanomaterials for biomedical applications. Small 2020;16(9):1901943. 链接1

[21] Song S, Choi S. Inertial modulation of hydrophoretic cell sorting and focusing. Appl Phys Lett 2014;104(7):074106. 链接1

[22] Gao R, Cheng L, Wang S, Bi X, Wang X, Wang R, et al. Efficient separation of tumor cells from untreated whole blood using a novel multistage hydrodynamic focusing microfluidics. Talanta 2020;207:120261. 链接1

[23] Nunes JK, Wu CY, Amini H, Owsley K, Di Carlo D, Stone HA. Fabricating shaped microfibers with inertial microfluidics. Adv Mater 2014;26(22):3712–7. 链接1

[24] Amini H, Sollier E, Masaeli M, Xie Yu, Ganapathysubramanian B, Stone HA, et al. Engineering fluid flow using sequenced microstructures. Nat Commun 2013;4:1826. 链接1

[25] Stoecklein D, Davies M, de Rutte JM, Wu CY, Di Carlo D, Ganapathysubramanian B. FlowSculpt: software for efficient design of inertial flow sculpting devices. Lab Chip 2019;19(19):3277–91. 链接1

[26] Wu CY, Owsley K, Di Carlo D. Rapid software-based design and optical transient liquid molding of microparticles. Adv Mater 2015;27(48):7970–8. 链接1

[27] Wu CY, Stoecklein D, Kommajosula A, Lin J, Owsley K, Ganapathysubramanian B, et al. Shaped 3D microcarriers for adherent cell culture and analysis. Microsyst Nanoeng 2018;4(1):21. 链接1

[28] Stoecklein D, Di Carlo D. Nonlinear microfluidics. Anal Chem 2019;91 (1):296–314. 链接1

[29] Boyd DA, Shields AR, Howell PB Jr, Ligler FS. Design and fabrication of uniquely shaped thiol-ene microfibers using a two-stage hydrodynamic focusing design. Lab Chip 2013;13(15):3105–10. 链接1

[30] Stoecklein D, Davies M, Wubshet N, Le J, Ganapathysubramanian B. Automated design for microfluid flow sculpting: multiresolution approaches, efficient encoding, and CUDA implementation. J Fluids Eng 2017;139(3):031402. 链接1

[31] Daniele MA, Boyd DA, Adams AA, Ligler FS. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications. Adv Healthc Mater 2015;4(1):11–28. 链接1

[32] Qi H, Liang A, Jiang H, Chong X, Wang Y. Effect of pipe surface wettability on flow slip property. Ind Eng Chem Res 2018;57(37):12543–50. 链接1

相关研究