期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第5期 doi: 10.1016/j.eng.2021.02.010

用于可持续电子器件的软物质材料研究进展

a Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
b Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
c KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

收稿日期: 2020-10-01 修回日期: 2020-12-08 录用日期: 2021-02-08 发布日期: 2021-04-18

下一篇 上一篇

摘要

在从传统化石燃料向可再生能源的转变中,生态友好材料因其可持续性和可生物降解性引起了研究人员的广泛兴趣。研究发现,在电子器件中应用可持续材料,可获得来自废弃生物资源的工业效益并起到保护环境的作用。本文综述了可持续材料用于有机电子元件(如基板、绝缘体、半导体和导体)的进展。希望本文能够引起人们对绿色和可持续工业材料及其实际应用的关注。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Bettinger CJ, Bao Z. Biomaterials-based organic electronic devices. Polym Int 2010;59(5):563–7. 链接1

[ 2 ] Kim DH, Lu N, Ma R, Kim YS, Kim RH, Wang S, et al. Epidermal electronics. Science 2011;333(6044):838–43. 链接1

[ 3 ] Kim YJ, Chun SE, Whitacre J, Bettinger CJ. Self-deployable current sources fabricated from edible materials. J Mater Chem B Mater Biol Med 2013;1 (31):3781–8. 链接1

[ 4 ] Norton JJS, Lee DS, Lee JW, Lee W, Kwon O, Won P, et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proc Natl Acad Sci USA 2015;112(13):3920–5. 链接1

[ 5 ] Tao H, Hwang SW, Marelli B, An B, Moreau JE, Yang M, et al. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc Natl Acad Sci USA 2014;111(49):17385–9. 链接1

[ 6 ] Balde K, Wang F, Huisman J, Kuehr R. The global e-waste monitor 2014: quantities, flows and resources. Bonn: United Nations University; 2015. 链接1

[ 7 ] Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, et al. Marine pollution. Plastic waste inputs from land into the ocean. Science 2015;347(6223):768–71. 链接1

[ 8 ] Shah AA, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics: a comprehensive review. Biotechnol Adv 2008;26(3):246–65. 链接1

[ 9 ] Singh B, Sharma N. Mechanistic implications of plastic degradation. Polym Degrad Stabil 2008;93(3):561–84. 链接1

[10] Kang SK, Murphy RKJ, Hwang SW, Lee SM, Harburg DV, Krueger NA, et al. Bioresorbable silicon electronic sensors for the brain. Nature 2016;530 (7588):71–6. 链接1

[11] Li J, He Y, Inoue Y. Study on thermal and mechanical properties of biodegradable blends of poly(e-caprolactone) and lignin. Polym J 2001;33 (4):336–43. 链接1

[12] Hosoda N, Tsujimoto T, Uyama H. Plant oil-based green composite using porous poly(3-hydroxybutyrate). Polym J 2014;46(5):301–6. 链接1

[13] Nigam PS, Singh A. Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 2011;37(1):52–68. 链接1

[14] Eichhorn SJ, Gandini A. Materials from renewable resources. MRS Bull 2010;35(3):187–93. 链接1

[15] Nakai Y, Yoshikawa M. Cellulose as a membrane material for optical resolution. Polym J 2015;47(4):334–9. 链接1

[16] Sunilkumar M, Gafoor AA, Anas A, Haseena AP, Sujith A. Dielectric properties: a gateway to antibacterial assay—a case study of low-density polyethylene/chitosan composite films. Polym J 2014;46(7):422–9. 链接1

[17] Huang X, Zhang S, Zhang Y, Zhang H, Yang X. Sulfonated polyimide/chitosan composite membranes for a vanadium redox flow battery: influence of the sulfonation degree of the sulfonated polyimide. Polym J 2016;48(8):905–18. 链接1

[18] Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci 2006;31(7):603–32. 链接1

[19] Xu C, Arancon RAD, Labidi J, Luque R. Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 2014;43(22):7485–500. 链接1

[20] Besson M, Gallezot P, Pinel C. Conversion of biomass into chemicals over metal catalysts. Chem Rev 2014;114(3):1827–70. 链接1

[21] Pérez S, Bertoft E. The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starke 2010;62(8):389–420. 链接1

[22] Damager I, Engelsen SB, Blennow A, Møller BL, Motawia MS. First principles insight into the a-glucan structures of starch: their synthesis, conformation, and hydration. Chem Rev 2010;110(4):2049–80. 链接1

[23] Lligadas G, Ronda JC, Galià M, Cádiz V. Renewable polymeric materials from vegetable oils: a perspective. Mater Today 2013;16(9):337–43. 链接1

[24] Chen GQ. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 2009;38(8):2434–46. 链接1

[25] Irimia-Vladu M. ‘‘Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem Soc Rev 2014;43 (2):588–610. 链接1

[26] Tobjörk D, Österbacka R. Paper electronics. Adv Mater 2011;23(17):1935–61. 链接1

[27] Eder F, Klauk H, Halik M, Zschieschang U, Schmid G, Dehm C. Organic electronics on paper. Appl Phys Lett 2004;84(14):2673–5. 链接1

[28] Bollström R, Määttänen A, Tobjörk D, Ihalainen P, Kaihovirta N, Österbacka R, et al. A multilayer coated fiber-based substrate suitable for printed functionality. Org Electron 2009;10(5):1020–3. 链接1

[29] Zschieschang U, Yamamoto T, Takimiya K, Kuwabara H, Ikeda M, Sekitani T, et al. Organic electronics on banknotes. Adv Mater 2011;23(5):654–8. 链接1

[30] Yun TY, Eom S, Lim S. Based capacitive touchpad using home inkjet printer. J Disp Technol 2016;12(11):1411–6. 链接1

[31] Shao F, Feng P, Wan C, Wan X, Yang Y, Shi Y, et al. Multifunctional logic demonstrated in a flexible multigate oxide-based electric-double-layer transistor on paper substrate. Adv Electron Mater 2017;3(3):1600509. 链接1

[32] Ha D, Zhitenev NB, Fang Z. Paper in electronic and optoelectronic devices. Adv Electron Mater 2018;4(5):1700593. 链接1

[33] Casula G, Lai S, Matino L, Santoro F, Bonfiglio A, Cosseddu P. Printed, lowvoltage, all-organic transistors and complementary circuits on paper substrate. Adv Electron Mater 2020;6(5):1901027. 链接1

[34] Martins R, Nathan A, Barros R, Pereira L, Barquinha P, Correia N, et al. Complementary metal oxide semiconductor technology with and on paper. Adv Mater 2011;23(39):4491–6. 链接1

[35] Kim DY, Steckl AJ. Electrowetting on paper for electronic paper display. ACS Appl Mater Interfaces 2010;2(11):3318–23. 链接1

[36] Siegel AC, Phillips ST, Wiley BJ, Whitesides GM. Thin, lightweight, foldable thermochromic displays on paper. Lab Chip 2009;9(19):2775–81. 链接1

[37] Hübler A, Trnovec B, Zillger T, Ali M, Wetzold N, Mingebach M, et al. Printed paper photovoltaic cells. Adv Energy Mater 2011;1(6):1018–22. 链接1

[38] Barr MC, Rowehl JA, Lunt RR, Xu J, Wang A, Boyce CM, et al. Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv Mater 2011;23(31):3499–505. 链接1

[39] Marsh RE, Corey RB, Pauling L. An investigation of the structure of silk fibroin. Biochim Biophys Acta 1955;16(1):1–34. 链接1

[40] Hota MK, Bera MK, Kundu B, Kundu SC, Maiti CK. A natural silk fibroin protein-based transparent bio-memristor. Adv Funct Mater 2012;22 (21):4493–9. 链接1

[41] Wang CH, Hsieh CY, Hwang JC. Flexible organic thin-film transistors with silk fibroin as the gate dielectric. Adv Mater 2011;23(14):1630–4. 链接1

[42] Capelli R, Amsden JJ, Generali G, Toffanin S, Benfenati V, Muccini M, et al. Integration of silk protein in organic and light-emitting transistors. Org Electron 2011;12(7):1146–51. 链接1

[43] Chang TH, Liao CP, Tsai JC, Lee CY, Hwang JC, Tso IM, et al. Natural polyelectrolyte: major ampullate spider silk for electrolyte organic fieldeffect transistors. Org Electron 2014;15(4):954–60. 链接1

[44] Kim DH, Viventi J, Amsden JJ, Xiao J, Vigeland L, Kim YS, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 2010;9(6):511–7. 链接1

[45] Hwang SW, Tao H, Kim DH, Cheng H, Song JK, Rill E, et al. A physically transient form of silicon electronics. Science 2012;337(6102):1640–4. 链接1

[46] Diddens I, Murphy B, Krisch M, Müller M. Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 2008;41 (24):9755–9. 链接1

[47] Matsuo M, Sawatari C, Iwai Y, Ozaki F. Effect of orientation distribution and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 1990;23(13):3266–75. 链接1

[48] Sakurada I, Ito T, Nakamae K. Elastic moduli of polymer crystals for the chain axial direction. Makromol Chem 1964;75(1):1–10. 链接1

[49] Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 2005;44(22):3358–93. 链接1

[50] Oldenbourg R, Wen X, Meyer RB, Caspar DLD. Orientational distribution function in nematic tobacco-mosaic-virus liquid crystals measured by X-ray diffraction. Phys Rev Lett 1988;61(16):1851–4. 链接1

[51] Buining PA, Lekkerkerker HNW. Isotropic-nematic phase separation of a dispersion of organophilic boehmite rods. J Phys Chem 1993;97(44):11510–6. 链接1

[52] Risteen BE, Blake A, McBride MA, Rosu C, Park JO, Srinivasarao M, et al. Enhanced alignment of water-soluble polythiophene using cellulose nanocrystals as a liquid crystal template. Biomacromolecules 2017;18 (5):1556–62. 链接1

[53] Liu Q, Campbell MG, Evans JS, Smalyukh II. Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals. Adv Mater 2014;26(42):7178–84. 链接1

[54] Petritz A, Wolfberger A, Fian A, Griesser T, Irimia-Vladu M, Stadlober B. Cellulose-derivative-based gate dielectric for high-performance organic complementary inverters. Adv Mater 2015;27(46):7645–56. 链接1

[55] Thiemann S, Sachnov SJ, Pettersson F, Bollström R, Österbacka R, Wasserscheid P, et al. Cellulose-based ionogels for paper electronics. Adv Funct Mater 2014;24(5):625–34. 链接1

[56] Chiu YC, Sun HS, Lee WY, Halila S, Borsali R, Chen WC. Oligosaccharide carbohydrate dielectrics toward high-performance non-volatile transistor memory devices. Adv Mater 2015;27(40):6257–64. 链接1

[57] Chiu YC, Otsuka I, Halila S, Borsali R, Chen WC. High-performance nonvolatile transistor memories of pentacence using the green electrets of sugar-based block copolymers and their supramolecules. Adv Funct Mater 2014;24 (27):4240–9. 链接1

[58] Hagenmaier RD, Shaw PE. Permeability of shellac coatings to gases and water vapor. J Agric Food Chem 1991;39(5):825–9. 链接1

[59] Goswami DN. Dielectric behavior of the constituents of the natural resin shellac. J Appl Polym Sci 1979;24(9):1977–84. 链接1

[60] Irimia-Vladu M, Głowacki ED, Schwabegger G, Leonat L, Akpinar HZ, Sitter H, et al. Natural resin shellac as a substrate and a dielectric layer for organic field-effect transistors. Green Chem 2013;15(6):1473–6. 链接1

[61] Mao LK, Hwang JC, Tsai JC. Operation voltage reduction and gain enhancement in organic CMOS inverters with the TTC/gelatin bilayer dielectric. Org Electron 2015;16:221–6. 链接1

[62] Acar H, Çınar S, Thunga M, Kessler MR, Hashemi N, Montazami R. Study of physically transient insulating materials as a potential platform for transient electronics and bioelectronics. Adv Funct Mater 2014;24(26):4135–43. 链接1

[63] Paradossi G, Cavalieri F, Chiessi E, Spagnoli C, Cowman MK. Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci Mater Med 2003;14:687–91. 链接1

[64] Chang JW, Wang CG, Huang CY, Tsai TD, Guo TF, Wen TC. Chicken albumen dielectrics in organic field-effect transistors. Adv Mater 2011;23(35):4077–81. 链接1

[65] Lu Y, Fujii M. Dielectric analysis of hen egg white with denaturation and in cool storage. Int J Food Sci Technol 1998;33(4):393–9. 链接1

[66] Surjushe A, Vasani R, Saple DG. Aloe vera: a short review. Indian J Dermatol 2008;53(4):163–6. 链接1

[67] Khor LQ, Cheong KY. Aloe vera gel as natural organic dielectric in electronic application. J Mater Sci Mater Electron 2013;24(7):2646–52. 链接1

[68] Lim ZX, Sreenivasan S, Wong YH, Zhao F, Cheong KY. Filamentary conduction in Aloe vera film for memory application. Procedia Eng 2017;184:655–62. 链接1

[69] Khor LQ, Cheong KY. N-type organic field-effect transistor based on fullerene with natural Aloe vera/SiO2 nanoparticles as gate dielectric. ECS J Solid State Sci Technol 2013;2(11):440–4. 链接1

[70] Alberts B. Molecular biology of the cell. 5th ed. New York: Garland Science; 2008. 链接1

[71] Hinze D, Hatnik U, Sturm M. An object oriented simulation of real occurring biological processes for DNA computing and its experimental verification. In: Jonoska N, Seeman NC, editors. DNA computing. New York: Springer; 2002. p. 1–13. 链接1

[72] Church GM, Gao Y, Kosuri S. Next-generation digital information storage in DNA. Science 2012;337(6102):1628. 链接1

[73] Braich RS, Chelyapov N, Johnson C, Rothemund PWK, Adleman L. Solution of a 20-variable 3-SAT problem on a DNA computer. Science 2002;296 (5567):499–502. 链接1

[74] Reif JH. Successes and challenges. Science 2002;296(5567):478–9. 链接1

[75] Jones MR, Seeman NC, Mirkin CA. Programmable materials and the nature of the DNA bond. Science 2015;347(6224):1260901.

[76] Park SM, Park G, Cha YJ, Yoon DK. Generation of 2D DNA microstructures via topographic control and shearing. Small 2020;16(34):e2002449. 链接1

[77] Cha YJ, Park SM, You R, Kim H, Yoon DK. Microstructure arrays of DNA using topographic control. Nat Commun 2019;10(1):2512. 链接1

[78] Cha YJ, Gim MJ, Oh K, Yoon DK. Twisted-nematic-mode liquid crystal display with a DNA alignment layer. J Inf Disp 2015;16(3):129–35. 链接1

[79] Gomez EF, Venkatraman V, Grote JG, Steckl AJ. Exploring the potential of nucleic acid bases in organic light emitting diodes. Adv Mater 2015;27 (46):7552–62. 链接1

[80] Steckl AJ. DNA—a new material for photonics? Nat Photonics 2007;1(1):3–5. 链接1

[81] Hagen JA, Li W, Steckl AJ, Grote JG. Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer. Appl Phys Lett 2006;88(17):171109. 链接1

[82] Lee W, Chen Q, Fan X, Yoon DK. Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption. Lab Chip 2016;16 (24):4770–6. 链接1

[83] Steckl AJ, Spaeth H, You H, Gomez E, Grote J. DNA as an optical material. Opt Photonics News 2011;22(7):34–9. 链接1

[84] Gomez EF, Venkatraman V, Grote JG, Steckl AJ. DNA bases thymine and adenine in bio-organic light emitting diodes. Sci Rep 2014;4(1):7105. 链接1

[85] Malliaras G, Abidian MR. Organic bioelectronic materials and devices. Adv Mater 2015;27(46):7492. 链接1

[86] Faber C, Attaccalite C, Olevano V, Runge E, Blase X. First-principles GW calculations for DNA and RNA nucleobases. Phys Rev B Condens Matter Mater Phys 2011;83(11):115123. 链接1

[87] Lee J, Park JH, Lee YT, Jeon PJ, Lee HS, Nam SH, et al. DNA-base guanine as hydrogen getter and charge-trapping layer embedded in oxide dielectrics for inorganic and organic field-effect transistors. ACS Appl Mater Interfaces 2014;6(7):4965–73. 链接1

[88] Bravaya KB, Kostko O, Dolgikh S, Landau A, Ahmed M, Krylov AI. Electronic structure and spectroscopy of nucleic acid bases: ionization energies, ionization-induced structural changes, and photoelectron spectra. J Phys Chem A 2010;114(46):12305–17. 链接1

[89] Pong W, Inouye CS. Vacuum ultraviolet photoemission studies of nucleic acid bases. J Appl Phys 1976;47(8):3444–6. 链接1

[90] Urano S, Yang X, LeBreton PR. UV photoelectron and quantum mechanical characterization of DNA and RNA bases: valence electronic structures of adenine, 1,9-dimethyl-guanine, l-methylcytosine, thymine and uracil. J Mol Struct 1989;214:315–28. 链接1

[91] Magulick J, Beerbom MM, Schlaf R. Comparison of ribonucleic acid homopolymer ionization energies and charge injection barriers. J Phys Chem B 2006;110(32):15973–81. 链接1

[92] Bixon M, Giese B, Wessely S, Langenbacher T, Michel-Beyerle ME, Jortner J. Long-range charge hopping in DNA. Proc Natl Acad Sci USA 1999;96 (21):11713–6. 链接1

[93] Henderson PT, Jones D, Hampikian G, Kan Y, Schuster GB. Long-distance charge transport in duplex DNA: the phonon-assisted polaron-like hopping mechanism. Proc Natl Acad Sci USA 1999;96(15):8353–8. 链接1

[94] Kawai K, Kodera H, Osakada Y, Majima T. Sequence-independent and rapid long-range charge transfer through DNA. Nat Chem 2009;1(2):156–9. 链接1

[95] Meggers E, Michel-Beyerle ME, Giese B. Sequence dependent long range hole transport in DNA. J Am Chem Soc 1998;120(49):12950–5. 链接1

[96] Xiang L, Palma JL, Bruot C, Mujica V, Ratner MA, Tao N. Intermediate tunnelling-hopping regime in DNA charge transport. Nat Chem 2015;7 (3):221–6. 链接1

[97] Porath D, Bezryadin A, de Vries S, Dekker C. Direct measurement of electrical transport through DNA molecules. Nature 2000;403(6770):635–8. 链接1

[98] Lee HY, Tanaka H, Otsuka Y, Yoo KH, Lee JO, Kawai T. Control of electrical conduction in DNA using oxygen hole doping. Appl Phys Lett 2002;80 (9):1670–2. 链接1

[99] Saito I, Nakamura T, Nakatani K, Yoshioka Y, Yamaguchi K, Sugiyama H. Mapping of the hot spots for DNA damage by one-electron oxidation: efficacy of GG doublets and GGG triplets as a trap in long-range hole migration. J Am Chem Soc 1998;120(48):12686–7. 链接1

[100] Ben-Jacob E, Hermon Z, Caspi S. DNA transistor and quantum bit element: realization of nano-biomolecular logical devices. Phys Lett A 1999;263 (3):199–202. 链接1

[101] Zhang Y, Zalar P, Kim C, Collins S, Bazan GC, Nguyen TQ. DNA interlayers enhance charge injection in organic field-effect transistors. Adv Mater 2012;24(31):4255–60. 链接1

[102] Shi W, Yu J, Huang W, Zheng Y. Performance improvement of a pentacene organic field-effect transistor through a DNA interlayer. J Phys D Appl Phys 2014;47(20):205402. 链接1

[103] Watson JD, Crick FHC. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953;171(4356):737–8. 链接1

[104] Lydon JE. The DNA double helix—the untold story. Liq Cryst Today 2003;12 (2):1–9. 链接1

[105] Robinson C. Liquid-crystalline structures in polypeptide solutions. Tetrahedron 1961;13(1–3):219–34. 链接1

[106] Livolant F, Levelut AM, Doucet J, Benoit JP. The highly concentrated liquidcrystalline phase of DNA is columnar hexagonal. Nature 1989;339 (6227):724–6. 链接1

[107] Rill RL, Strzelecka TE, Davidson MW, van Winkle DH. Ordered phases in concentrated DNA solutions. Phys A 1991;176(1):87–116. 链接1

[108] Merchant K, Rill RL. DNA length and concentration dependencies of anisotropic phase transitions of DNA solutions. Biophys J 1997;73 (6):3154–63. 链接1

[109] Allmann BP, Shearer PM. A high-frequency secondary event during the 2004 Parkfield earthquake. Science 2007;318(5854):1279–83. 链接1

[110] Brandes R, Kearns DR. Magnetic ordering of DNA liquid crystals. Biochemistry 1986;25(20):5890–5. 链接1

[111] Alam TM, Drobny G. Magnetic ordering in synthetic oligonucleotides. A deuterium nuclear magnetic resonance investigation. J Chem Phys 1990;92 (11):6840–6. 链接1

[112] Hagerman PJ. Flexibility of DNA. Ann Rev Biophys Biophys Chem 1988;17:265–86. 链接1

[113] Cha YJ, Yoon DK. Control of periodic zigzag structures of DNA by a simple shearing method. Adv Mater 2017;29(3):1604247. 链接1

[114] Cha YJ, Kim DS, Yoon DK. Highly aligned plasmonic gold nanorods in a DNA matrix. Adv Funct Mater 2017;27(45):1703790. 链接1

[115] Kesama MR, Dugasani SR, Cha YJ, Son J, Gnapareddy B, Yoo S, et al. Optoelectrical and mechanical properties of multiwall carbon nanotubeintegrated DNA thin films. Nanotechnology 2019;30(24):245704. 链接1

[116] Han MJ, McBride M, Risteen B, Zhang G, Khau BV, Reichmanis E, et al. Highly oriented and ordered water-soluble semiconducting polymers in a DNA matrix. Chem Mater 2020;32(2):688–96. 链接1

[117] Murphy CJ, Arkin MR, Jenkins Y, Ghatlia ND, Bossmann SH, Turro NJ, et al. Long-range photoinduced electron transfer through a DNA helix. Science 1993;262(5136):1025–9. 链接1

[118] Wang L, Yoshida J, Ogata N, Sasaki S, Kajiyama T. Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)– cationic surfactant complexes: large-scale preparation and optical and thermal properties. Chem Mater 2001;13(4):1273–81. 链接1

[119] Catherall T, Huskisson D, McAdams S, Vijayaraghavan A. Self-assembly of one dimensional DNA-templated structure. J Mater Chem C Mater Opt Electron Devices 2014;2(34):6895–920. 链接1

[120] Heckman EM, Hagen JA, Yaney PP, Grote JG, Hopkins FK. Processing techniques for deoxyribonucleic acid: biopolymer for photonics applications. Appl Phys Lett 2005;87(21):211115. 链接1

[121] Hirata K, Oyamada T, Imai T, Sasabe H, Adachi C, Koyama T. Electroluminescence as a probe for elucidating electrical conductivity in a deoxyribonucleic acid-cetyltrimethylammonium lipid complex layer. Appl Phys Lett 2004;85(9):1627–9. 链接1

[122] Stadler P, Oppelt K, Singh TB, Grote JG, Schwödiauer R, Bauer S, et al. Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric. Org Electron 2007;8(6):648–54. 链接1

[123] Kwon YW, Lee CH, Choi DH, Jin JI. Materials science of DNA. J Mater Chem 2009;19(10):1353–80. 链接1

[124] Ouchen F, Venkat N, Joyce DM, Singh KM, Smith SR, Yaney PP, et al. Deoxyribonucleic acid-ceramic hybrid dielectrics for potential application as gate insulators in organic field effect transistors. Appl Phys Lett 2013;103 (11):113701. 链接1

[125] Kim YS, Jung KH, Lee UR, Kim KH, Hoang MH, Jin JI, et al. High-mobility bioorganic field effect transistors with photoreactive DNAs as gate insulators. Appl Phys Lett 2010;96(10):103307. 链接1

[126] Yumusak C, Singh TB, Sariciftci NS, Grote JG. Bio-organic field effect transistors based on crosslinked deoxyribonucleic acid (DNA) gate dielectric. Appl Phys Lett 2009;95(26):263304. 链接1

[127] Tang CW, Albrecht AC. Photovoltaic effects of metal–chlorophyll-a–metal sandwich cells. J Chem Phys 1975;62(6):2139–49. 链接1

[128] Wang XF, Wang L, Wang Z, Wang Y, Tamai N, Hong Z, et al. Natural photosynthetic carotenoids for solution-processed organic bulkheterojunction solar cells. J Phys Chem C 2013;117(2):804–11. 链接1

[129] Ferreira ESB, Hulme AN, McNab H, Quye A. The natural constituents of historical textile dyes. Chem Soc Rev 2004;33(6):329–36. 链接1

[130] Głowacki ED, Irimia-Vladu M, Bauer S, Sariciftci NS. Hydrogen-bonds in molecular solids—from biological systems to organic electronics. J Mater Chem B Mater Biol Med 2013;1(31):3742–53. 链接1

[131] Aakeroy CB, Seddon KR. The hydrogen bond and crystal engineering. Chem Soc Rev 1993;22(6):397–407. 链接1

[132] Desiraju GR. Reflections on the hydrogen bond in crystal engineering. Cryst Growth Des 2011;11(4):896–8. 链接1

[133] Głowacki ED, Voss G, Sariciftci NS. 25th anniversary article: progress in chemistry and applications of functional indigos for organic electronics. Adv Mater 2013;25(47):6783–800. 链接1

[134] Irimia-Vladu M, Głowacki ED, Troshin PA, Schwabegger G, Leonat L, Susarova DK, et al. Indigo—a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv Mater 2012;24 (3):375–80. 链接1

[135] Głowacki ED, Leonat L, Voss G, Bodea MA, Bozkurt Z, Ramil AM, et al. Ambipolar organic field effect transistors and inverters with the natural material Tyrian Purple. AIP Adv 2011;1(4):042132. 链接1

[136] Ðerek V, Głowacki ED, Sytnyk M, Heiss W, Marciuš M, Ristic´ M, et al. Enhanced near-infrared response of nano- and microstructured silicon/ organic hybrid photodetectors. Appl Phys Lett 2015;107(8):083302. 链接1

[137] Kanbur Y, Irimia-Vladu M, Głowacki ED, Voss G, Baumgartner M, Schwabegger G, et al. Vacuum-processed polyethylene as a dielectric for low operating voltage organic field effect transistors. Org Electron 2012;13 (5):919–24. 链接1

[138] Scherwitzl B, Resel R, Winkler A. Film growth, adsorption and desorption kinetics of indigo on SiO2. J Chem Phys 2014;140(18):184705. 链接1

[139] Truger M, Roscioni OM, Röthel C, Kriegner D, Simbrunner C, Ahmed R, et al. Surface-induced phase of Tyrian Purple (6,60 -dibromoindigo): thin film formation and stability. Cryst Growth Des 2016;16(7):3647–55. 链接1

[140] Klimovich IV, Leshanskaya LI, Troyanov SI, Anokhin DV, Novikov DV, Piryazev AA, et al. Design of indigo derivatives as environment-friendly organic semiconductors for sustainable organic electronics. J Mater Chem C Mater Opt Electron Devices 2014;2(36):7621–31. 链接1

[141] Pitayatanakul O, Higashino T, Kadoya T, Tanaka M, Kojima H, Ashizawa M, et al. High performance ambipolar organic field-effect transistors based on indigo derivatives. J Mater Chem C Mater Opt Electron Devices 2014;2 (43):9311–7. 链接1

[142] Klebe G, Graser E, Hädicke E, Berndt J. Crystallochromy as a solid-state effect: correlation of molecular conformation, crystal packing and colour in perylene-3,4:9,10-bis(dicarboximide) pigments. Acta Crystallogr Sect B 1989;B45(1):69–77. 链接1

[143] Hunger K. Toxicology and toxicological testing of colorants. Rev Prog Color Relat Top 2005;35(1):76–89. 链接1

[144] Głowacki ED, Irimia-Vladu M, Kaltenbrunner M, Gsiorowski J, White MS, Monkowius U, et al. Hydrogen-bonded semiconducting pigments for airstable field-effect transistors. Adv Mater 2013;25(11):1563–9. 链接1

[145] Haucke G, Graness G. Thermal isomerization of indigo. Angew Chem Int Ed Engl 1995;34(1):67–8. 链接1

[146] Głowacki ED, Romanazzi G, Yumusak C, Coskun H, Monkowius U, Voss G, et al. Epindolidiones-versatile and stable hydrogen-bonded pigments for organic field-effect transistors and light-emitting diodes. Adv Funct Mater 2015;25(5):776–87. 链接1

[147] Rossi L, Bongiovanni G, Kalinowski J, Lanzani G, Mura A, Nisoli M, et al. Ultrafast optical probes of electronic excited states in linear transquinacridone. Chem Phys Lett 1996;257(5–6):545–51. 链接1

[148] Labana SS, Labana LL. Quinacridones. Chem Rev 1967;67(1):1–18. 链接1

[149] McGinness J, Corry P, Proctor P. Amorphous semiconductor switching in melanins. Science 1974;183(4127):853–5. 链接1

[150] Bothma JP, de Boor J, Divakar U, Schwenn PE, Meredith P. Device-quality electrically conducting melanin thin films. Adv Mater 2008;20(18):3539–42. 链接1

[151] Ambrico M, Ambrico PF, Cardone A, Ligonzo T, Cicco SR, Di Mundo R, et al. Melanin layer on silicon: an attractive structure for a possible exploitation in biopolymer based metal-insulator-silicon devices. Adv Mater 2011;23(29):3332–6. 链接1

[152] Bettinger CJ, Bruggeman JP, Misra A, Borenstein JT, Langer R. Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. Biomaterials 2009;30(17):3050–7. 链接1

[153] Ambrico M, Cardone A, Ligonzo T, Augelli V, Ambrico PF, Cicco S, et al. Hysteresis-type current-voltage characteristics in Au/eumelanin/ITO/glass structure: towards melanin based memory devices. Org Electron 2010;11 (11):1809–14. 链接1

[154] Lin YJ. Hysteresis-type current-voltage characteristics of indium tin oxide/ poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate)/ indium tin oxide devices. J Appl Phys 2008;103(6):063702. 链接1

[155] Zhong C, Deng Y, Roudsari AF, Kapetanovic A, Anantram MP, Rolandi M. A polysaccharide bioprotonic field-effect transistor. Nat Commun 2011;2 (1):476. 链接1

[156] Angione MD, Pilolli R, Cotrone S, Magliulo M, Mallardi A, Palazzo G, et al. Carbon based materials for electronic bio-sensing. Mater Today 2011;14 (9):424–33. 链接1

[157] Muskovich M, Bettinger CJ. Biomaterials-based electronics: polymers and interfaces for biology and medicine. Adv Healthc Mater 2012;1(3):248–66. 链接1

[158] Serrano MC, Chung EJ, Ameer GA. Advances and applications of biodegradable elastomers in regenerative medicine. Adv Funct Mater 2010;20(2):192–208. 链接1

[159] Sekitani T, Someya T. Human-friendly organic integrated circuits. Mater Today 2011;14(9):398–407. 链接1

[160] Irimia-Vladu M, Sariciftci NS, Bauer S. Exotic materials for bio-organic electronics. J Mater Chem 2011;21(5):1350–61. 链接1

[161] Khodagholy D, Doublet T, Gurfinkel M, Quilichini P, Ismailova E, Leleux P, et al. Highly conformable conducting polymer electrodes for in vivo recordings. Adv Mater 2011;23(36):H268–72. 链接1

[162] Abidian MR, Ludwig KA, Marzullo TC, Martin DC, Kipke DR. Interfacing conducting polymer nanotubes with the central nervous system: chronic neural recording using poly(3,4-ethylenedioxythiophene) nanotubes. Adv Mater 2009;21(37):3764–70. 链接1

[163] Richardson-Burns SM, Hendricks JL, Martin DC. Electrochemical polymerization of conducting polymers in living neural tissue. J Neural Eng 2007;4(2):L6–13. 链接1

[164] Luo SC, Mohamed Ali E, Tansil NC, Yu HH, Gao S, Kantchev EAB, et al. Poly (3,4-ethylenedioxythiophene) (PEDOT) nanobiointerfaces: thin, ultrasmooth, and functionalized PEDOT films with in vitro and in vivo biocompatibility. Langmuir 2008;24(15):8071–7. 链接1

[165] Isaksson J, Kjäll P, Nilsson D, Robinson ND, Berggren M, Richter-Dahlfors A. Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nat Mater 2007;6(9):673–9. 链接1

[166] Bolin MH, Svennersten K, Wang X, Chronakis IS, Richter-Dahlfors A, Jager EWH, et al. Nano-fiber scaffold electrodes based on PEDOT for cell stimulation. Sens Actuators B Chem 2009;142(2):451–6. 链接1

[167] Tybrandt K, Larsson KC, Kurup S, Simon DT, Kjäll P, Isaksson J, et al. Translating electronic currents to precise acetylcholine-induced neuronal signaling using an organic electrophoretic delivery device. Adv Mater 2009;21(44):4442–6. 链接1

[168] Tybrandt K, Larsson KC, Richter-Dahlfors A, Berggren M. Ion bipolar junction transistors. Proc Natl Acad Sci USA 2010;107(22):9929–32. 链接1

[169] Torsi L, Farinola GM, Marinelli F, Tanese MC, Omar OH, Valli L, et al. A sensitivity-enhanced field-effect chiral sensor. Nat Mater 2008;7(5):412–7. 链接1

[170] George PM, Lyckman AW, LaVan DA, Hegde A, Leung Y, Avasare R, et al. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 2005;26(17):3511–9. 链接1

相关研究