期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第3期 doi: 10.1016/j.eng.2021.03.002

气升式浆态床反应器的过程强化

a Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
b Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
c Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

收稿日期: 2019-01-28 修回日期: 2019-08-24 录用日期: 2019-12-17 发布日期: 2021-03-11

下一篇 上一篇

摘要

气升式浆态床反应器是一种重要的气-液-固多相反应器,包括鼓泡塔反应器和环流反应器。这些反应器具有剪切应力低、混合程度好、传质/传热能力强、成本低等优点,已被广泛应用于许多工业过程,尤其是生物发酵和能源化工领域。为了进一步提高浆态床反应器的性能(即混合和传质/传热性能)和满足工业应用要求(如温度控制、减少返混和产品分离等),浆态床反应器的过程强化至关重要。首先,本文回顾了这两种反应器在强化混合和传质/传热方面的最新研究进展。然后,总结了浆态床反应器在连续生产时混合与分离的过程强化方法,其中,由于具有高效率和低成本的优点,推荐采用将环流反应器内的定向流动与水力旋流器的简单固-液分离相结合的过程强化技术。接着,系统地讨论了浆态床反应器所面临的问题和挑战,包括流型判别、气体分布器设计、固体颗粒影响及其他问题。本文还介绍了应用计算流体力学对浆态床反应器进行数值模拟的研究进展,讨论了建模的难点。最后,对工业浆态床反应器的设计进行总结和展望。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Al-Qodah Z, Lafi W. Modeling of antibiotics production in magneto threephase airlift fermenter. Biochem Eng J 2001;7(1):7–16. 链接1

[ 2 ] Van Benthum WAJ, Van der Lans RGJM, Van Loosdrecht MCM, Heijnen JJ. The biofilm airlift suspension extension reactor—II: three-phase hydrodynamics. Chem Eng Sci 2000;55(3):699–711. 链接1

[ 3 ] Huang Q, Liu T, Yang J, Yao L, Gao L. Evaluation of radiative transfer using the finite volume method in cylindrical photoreactors. Chem Eng Sci 2011;66 (17):3930–40. 链接1

[ 4 ] Huang Q, Yao L, Liu T, Yang J. Simulation of the light evolution in an annular photobioreactor for the cultivation of Porphyridium cruentum. Chem Eng Sci 2012;84:718–26. 链接1

[ 5 ] Huang Q, Zhang W, Yang C. Modeling transport phenomena and reactions in a pilot slurry airlift loop reactor for direct coal liquefaction. Chem Eng Sci 2015;135:441–51. 链接1

[ 6 ] Jin B, Yin P, Lant P. Hydrodynamics and mass transfer coefficient in threephase airlift reactors containing activated sludge. Chem Eng Process 2006;45 (7):608–17. 链接1

[ 7 ] Guo X, Yao L, Huang Q. Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae. Bioresour Technol 2015;190:189–95. 链接1

[ 8 ] Yang C, Mao ZS. Numerical simulation of multiphase reactors with continuous liquid phase. London: Elsevier Academic Press; 2014. 链接1

[ 9 ] Huang Q, Jiang F, Wang L, Yang C. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering 2017;3(3):318–29. 链接1

[10] Russell AB, Thomas CR, Lilly MD. The influence of vessel height and topsection size on the hydrodynamic characteristics of airlift fermentors. Biotechnol Bioeng 1994;43(1):69–76. 链接1

[11] Choi KH, Lee WK. Circulation liquid velocity, gas holdup and volumetric oxygen transfer coefficient in external-loop airlift reactors. J Chem Technol Biotechnol 1993;56(1):51–8. 链接1

[12] Vial C, Lainé R, Poncin S, Midoux N, Wild G. Influence of gas distribution and regime transitions on liquid velocity and turbulence in a 3-D bubble column. Chem Eng Sci 2001;56(3):1085–93. 链接1

[13] Huang Q, Yang C, Yu G, Mao ZS. 3-D simulations of an internal airlift loop reactor using a steady two-fluid model. Chem Eng Technol 2007;30(7):870–9. 链接1

[14] Dhaouadi H, Poncin S, Hornut JM, Wild G. Solid effects on hydrodynamics and heat transfer in an external loop airlift reactor. Chem Eng Sci 2006;61 (4):1300–11. 链接1

[15] Heijnen JJ, Hols J, Van der Lans RGJM, Van Leeuwen HLJM, Mulder A, Weltevrede R. A simple hydrodynamic model for the liquid circulation velocity in a full-scale two- and three-phase internal airlift reactor operating in the gas recirculation regime. Chem Eng Sci 1997;52(15):2527–40. 链接1

[16] Kundakovic L, Vunjak-Novakovic G. A fluid dynamic-model of the draft tube gas–liquid–solid fluidized bed. Chem Eng Sci 1995;50(23):3763–75. 链接1

[17] Lukic´ NL, Sijacki IM, Kojic PS, Popovic SS, Tekic MN, Petrovic DL. Enhanced mass transfer in a novel external-loop airlift reactor with self-agitated impellers. Biochem Eng J 2017;118:53–63. 链接1

[18] Li D, Guo K, Li J, Huang Y, Zhou J, Liu H, et al. Hydrodynamics and bubble behaviour in a three-phase two-stage internal loop airlift reactor. Chin J Chem Eng 2018;26(6):1359–69. 链接1

[19] Chen J, Li F, Degaleesan S, Gupta P, Al-Dahhan MH, Dudukovic HMP, et al. Fluid dynamic parameters in bubble columns with internals. Chem Eng Sci 1999;54(13–14):2187–97. 链接1

[20] Dreher AJ, Krishna R. Liquid-phase backmixing in bubble columns, structured by introduction of partition plates. Catal Today 2001;69(1–4):165–70. 链接1

[21] Pangarkar K, Schildhauer TJ, Van Ommen JR, Nijenhuis J, Moulijn JA, Kapteijn F. Experimental and numerical comparison of structured packings with a randomly packed bed reactor for Fischer–Tropsch synthesis. Catal Today 2009;147(Suppl):S2–9. 链接1

[22] Guettel R, Kunz U, Turek T. Reactors for Fischer–Tropsch synthesis. Chem Eng Technol 2008;31(5):746–54. 链接1

[23] Jager B, Espinoza R. Advances in low-temperature Fischer–Tropsch synthesis. Catal Today 1995;23(1):17–28. 链接1

[24] Savchenko VI, Dorokhov VG, Makaryan IA, Sedov IV, Arutyunov VS. Slurry reactor system with inertial separation for Fischer–Tropsch synthesis and other three-phase hydrogenation processes. Can J Chem Eng 2016;94 (3):518–23. 链接1

[25] Yang T, Geng S, Yang C, Huang Q. Hydrodynamics and mass transfer in an internal airlift slurry reactor for process intensification. Chem Eng Sci 2018;184:126–33. 链接1

[26] Wang T, Wang J, Jin Y. Slurry reactors for gas-to-liquid processes: a review. Ind Eng Chem Res 2007;46(18):5824–47. 链接1

[27] Cozma P, Gavrilescu M. Airlift reactors: hydrodynamics, mass transfer and applications in environmental remediation. Environ Eng Manag J 2010;9 (5):681–702. 链接1

[28] Cozma P, Gavrilescu M. Airlift reactors: applications in wastewater treatment. Environ Eng Manag J 2012;11(8):1505–15. 链接1

[29] Yang GQ, Fan LS. Axial liquid mixing in high-pressure bubble columns. AIChE J 2003;49(8):1995–2008. 链接1

[30] Yadav A, Kushwaha A, Roy S. An algorithm for estimating radial gas holdup profiles in bubble columns from chordal densitometry measurements. Can J Chem Eng 2016;94(3):524–9. 链接1

[31] Shah YT, Kelkar BG, Godbole SP, Deckwer WD. Design parameters estimations for bubble column reactors. AIChE J 1982;28(3):353–79. 链接1

[32] Wu Y, Gidaspow D. Hydrodynamic simulation of methanol synthesis in gas– liquid slurry bubble column reactors. Chem Eng Sci 2000;55(3):573–87. 链接1

[33] Gupta P, Al-Dahhan MH, Dudukovic MP, Toseland BA. Comparison of singleand two-bubble class gas–liquid recirculation models—application to pilotplant radioactive tracer studies during methanol synthesis. Chem Eng Sci 2001;56(3):1117–25. 链接1

[34] Youssef AA, Al-Dahhan MH. Impact of internals on the gas holdup and bubble properties of a bubble column. Ind Eng Chem Res 2009;48(17):8007–13. 链接1

[35] Kagumba M, Al-Dahhan MH. Impact of internals size and configuration on bubble dynamics in bubble columns for alternative clean fuels production. Ind Eng Chem Res 2015;54(4):1359–72. 链接1

[36] Forret A, Schweitzer JM, Gauthier T, Krishna R, Schweich D. Liquid dispersion in large diameter bubble columns, with and without internals. Can J Chem Eng 2003;81(3–4):360–6. 链接1

[37] Pradhan AK, Parichha RK, De P. Gas hold-up in non-Newtonian solutions in a bubble column with internals. Can J Chem Eng 1993;71(3):468–71. 链接1

[38] Saxena SC, Rao NS, Thimmapuram PR. Gas phase holdup in slurry bubble columns for two- and three-phase systems. Chem Eng J 1992;49(3):151–9. 链接1

[39] Fair JR, Lambright AJ, Andersen JW. Heat transfer and gas holdup in a sparged contactor. Ind Eng Chem Process Des Dev 1962;1(1):33–6. 链接1

[40] Palaskar SN, De JK, Pandit AB. Liquid phase RTD studies in sectionalized bubble column. Chem Eng Technol 2000;23(1):61–9. 链接1

[41] Rabha S, Schubert M, Grugel F, Banowski M, Hampel U. Visualization and quantitative analysis of dispersive mixing by a helical static mixer in upward co-current gas–liquid flow. Chem Eng J 2015;262:527–40. 链接1

[42] Gaspillo PAD, Goto S. Mass transfer in bubble slurry column with static mixer in draft tube. J Chem Eng of Jpn 1991;24(5):680–2. 链接1

[43] Urseanu MI, Ellenberger J, Krishna R. A structured catalytic bubble column reactor: hydrodynamics and mixing studies. Catal Today 2001;69(1– 4):105–13. 链接1

[44] Khamadieva R, Böhm U. Mass transfer to the wall of a packed and unpacked bubble column operating with Newtonian and non-Newtonian liquids. Chem Eng J 2006;116(2):105–13. 链接1

[45] Sultan AJ, Sabri LS, Al-Dahhan MH. Influence of the size of heat exchanging internals on the gas holdup distribution in a bubble column using gamma-ray computed tomography. Chem Eng Sci 2018;186:1–25. 链接1

[46] Al Mesfer MK, Sultan AJ, Al-Dahhan MH. Impacts of dense heat exchanging internals on gas holdup cross-sectional distributions and profiles of bubble column using gamma ray computed tomography (CT) for FT synthesis. Chem Eng J 2016;300:317–33. 链接1

[47] Chen BH, Yang NS, Mcmillan AF. Gas holdup and pressure drop for air–water flow through plate bubble columns. Can J Chem Eng 1986;64(3):387–92. 链接1

[48] Magnussen P, Schumacher V, Rotermund GW, Hafner F. Residence time behavior of liquid-phase in bubble columns of larger diameter. Chem Ing Tech 1978;50(10):811. 链接1

[49] Krishna R, Urseanu MI, Van Baten JM, Ellenberger J. Liquid phase dispersion in bubble columns operating in the churn-turbulent flow regime. Chem Eng J 2000;78(1):43–51. 链接1

[50] Krishna R, Urseanu MI, Van Baten JM, Ellenberger J. Rise velocity of a swarm of large gas bubbles in liquids. Chem Eng Sci 1999;54(2):171–83. 链接1

[51] Chen B. Effects of liquid flow on axial mixing liquid in a bubble column. Can J Chem Eng 1972;50(3):436–8. 链接1

[52] Deckwer W, Graeser U, Langemann H, Serpemen Y. Zones of different mixing in the liquid phase of bubble columns. Chem Eng Sci 1973;28(5):1223–5. 链接1

[53] Thakur RK, Vial C, Nigam KDP, Nauman EB, Djelveh G. Static mixers in the process industries—a review. Chem Eng Res Des 2003;81(7):787–826. 链接1

[54] Fan LT, Hsu HH, Wang KB. Mass-transfer coefficient and pressure-drop data of two-phase oxygen–water flow in bubble column packed with static mixers. J Chem Eng Data 1975;20(1):26–8. 链接1

[55] Wang KB, Fan LT. Mass transfer in bubble columns packed with motionless mixers. Chem Eng Sci 1978;33(7):945–52. 链接1

[56] Hooshyar N, Vervloet D, Kapteijn F, Hamersma PJ, Mudde RF, Van Ommen JR. Intensifying the Fischer–Tropsch synthesis by reactor structuring—a model study. Chem Eng J 2012;207–208:865–70. 链接1

[57] Spiegel L, Meier W. Distillation columns with structured packings in the next decade. Chem Eng Res Des 2003;81(1):39–47. 链接1

[58] Horiuchi J, Tabata K, Kanno T, Kobayashi M. Continuous acetic acid production by a packed bed bioreactor employing charcoal pellets derived from waste mushroom medium. J Biosci Bioeng 2000;89(2):126–30. 链接1

[59] Pangarkar K, Schildhauer TJ, Van Ommen JR, Nijenhuis J, Kapteijn F, Moulijn JA. Structured packings for multiphase catalytic reactors. Ind Eng Chem Res 2008;47(10):3720–51. 链接1

[60] Nijhuis TA, Kreutzer MT, Romijn ACJ, Kapteijn F, Moulijn JA. Monolithic catalysts as efficient three-phase reactors. Chem Eng Sci 2001;56(3):823–9. 链接1

[61] Pangarkar K, Schildhauer TJ, Van Ommen JR, Nijenhuis J, Moulijn JA, Kapteijn F. Heat transport in structured packings with co-current downflow of gas and liquid. Chem Eng Sci 2010;65(1):420–6. 链接1

[62] Schildhauer TJ, Pangarkar K, Van Ommen JR, Nijenhuis J, Moulijn JA, Kapteijn F. Heat transport in structured packings with two-phase co-current downflow. Chem Eng J 2012;185–186:250–66. 链接1

[63] Baird MHI. Vibrations and pulsations-bane or blessing. Br Chem Eng 1966;11 (1):20–5. 链接1

[64] Ellenberger J, Krishna R. Improving mass transfer in gas–liquid dispersions by vibration excitement. Chem Eng Sci 2002;57(22–23):4809–15. 链接1

[65] Ellenberger J, Krishna R. Shaken, not stirred, bubble column reactors: enhancement of mass transfer by vibration excitement. Chem Eng Sci 2003;58(3–6):705–10. 链接1

[66] Ellenberger J, Van Baten JM, Krishna R. Intensification of bubble columns by vibration excitement. Catal Today 2003;79–80:181–8. 链接1

[67] Ellenberger J, Krishna R. Intensification of slurry bubble columns by vibration excitement. Can J Chem Eng 2003;81(3–4):655–9. 链接1

[68] Knopf FC, Ma J, Rice RG, Nikitopoulos D. Pulsing to improve bubble column performance: I. low gas rates. AIChE J 2006;52(3):1103–15. 链接1

[69] Knopf FC, Waghmare Y, Ma J, Rice RG. Pulsing to improve bubble column performance: II. jetting gas rates. AIChE J 2006;52(3):1116–26. 链接1

[70] Waghmare YG, Rice RG, Knopf FC. Mass transfer in a viscous bubble column with forced oscillations. Ind Eng Chem Res 2008;47(15):5386–94. 链接1

[71] Budzyn´ ski P, Dziubin´ ski M. Intensification of bubble column performance by introduction pulsation of liquid. Chem Eng Process 2014;78:44–57. 链接1

[72] Ellenberger J, Van Baten JM, Krishna R. Exploiting the Bjerknes force in bubble column reactors. Chem Eng Sci 2005;60(22):5962–70. 链接1

[73] Budzyn´ ski P, Gwiazda A, Dziubin´ ski M. Intensification of mass transfer in a pulsed bubble column. Chem Eng Process 2017;112:18–30. 链接1

[74] Hinze JO. Fundamentals of the hydrodynamic mechanism of splitting in dispersion process. AIChE J 1955;1(3):289–95. 链接1

[75] Buchanan RH, Jameson G, Oedjoe D. Cycle migration of bubbles in vertically vibrating liquid columns. Ind Eng Chem Fundam 1962;1(2):82–6. 链接1

[76] Krishna R, Sie ST. Design and scale-up of the Fischer–Tropsch bubble column slurry reactor. Fuel Process Technol 2000;64(1–3):73–105. 链接1

[77] Maretto C, Krishna R. Design and optimisation of a multi-stage bubble column slurry reactor for Fischer–Tropsch synthesis. Catal Today 2001;66(2– 4):241–8. 链接1

[78] Lucas MS, Reis NM, Li PG. Intensification of ozonation processes in a novel, compact, multi-orifice oscillatory baffled column. Chem Eng J 2016;296:335–9. 链接1

[79] Pereira FM, Sousa DZ, Alves MM, Mackley MR, Reis NM. CO2 dissolution and design aspects of a multiorifice oscillatory baffled column. Ind Eng Chem Res 2014;53(44):17303–16. 链接1

[80] Ahmed SMR, Phan AN, Harvey AP. Mass transfer enhancement as a function of oscillatory baffled reactor design. Chem Eng Process 2018;130:229–39. 链接1

[81] Ni X, Gao S. Scale-up correlation for mass transfer coefficients in pulsed baffled reactors. Chem Eng J Biochem Eng J 1996;63(3):157–66. 链接1

[82] Oliveira MSN, Fitch AW, Ni X. A study of bubble velocity and bubble residence time in a gassed oscillatory baffled column: effect of oscillation frequency. Chem Eng Res Des 2003;81(2):233–42. 链接1

[83] Oliveira MSN, Fitch AW, Ni XW. A study of velocity and residence time of single bubbles in a gassed oscillatory baffled column: effect of oscillation amplitude. J Chem Technol Biotechnol 2003;78(2–3):220–6. 链接1

[84] Oliveira MSN, Ni X. Gas hold-up and bubble diameters in a gassed oscillatory baffled column. Chem Eng Sci 2001;56(21–22):6143–8. 链接1

[85] Smith KB, Mackley MR. An experimental investigation into the scale-up of oscillatory flow mixing in baffled tubes. Chem Eng Res Des 2006;84 (11):1001–11. 链接1

[86] Laso M, de Brito MH, Bomio P, von Stockar U. Liquid-side mass transfer characteristics of a structured packing. Chem Eng J Biochem Eng J 1995;58 (3):251–8. 链接1

[87] Huang Q, Zhang W, Yang C, Mao ZS. Characteristics of multiphase flow, mixing and transport phenomena in airlift loop reactor. CIESC J 2014;65 (7):2465–73. 链接1

[88] Tao J, Huang J, Xiao H, Yang C, Huang Q. Influences of interstage height and superficial gas velocity in multistage internal airlift loop reactor on performance of mixing and mass transfer. CIESC J 2018;69 (7):2878–89. 链接1

[89] Gluz MD, Merchuk JC. Modified airlift reactors: the helical flow promoters. Chem Eng Sci 1996;51(11):2915–20. 链接1

[90] Schlötelburg C, Popovic M, Gluz M, Merchuk JC. Characterization of an airlift reactor with helical flow promoters. Can J Chem Eng 1999;77 (5):804–10. 链接1

[91] Räsänen M, Eerikäinen T, Ojamo H. Characterization and hydrodynamics of a novel helix airlift reactor. Chem Eng Process 2016;108:44–57. 链接1

[92] Luo L, Yuan J, Xie P, Sun J, Guo W. Hydrodynamics and mass transfer characteristics in an internal loop airlift reactor with sieve plates. Chem Eng Res Des 2013;91(12):2377–88. 链接1

[93] Zheng Z, Chen Y, Zhan X, Gao M, Wang Z. Mass transfer intensification in a novel airlift reactor assembly with helical sieve plates. Chem Eng J 2018;342:61–70. 链接1

[94] Chisti Y, Kasper M, Moo-Young M. Mass transfer in external-loop airlift bioreactors using static mixers. Can J Chem Eng 1990;68(1):45–50. 链接1

[95] Goto S, Gaspillo PD. The effect of static mixer on mass transfer in draft tube bubble column and in external loop column. Chem Eng Sci 1992;47(13– 14):3533–9. 链接1

[96] Lu XP, Wang YR, Shi J. Transfer characteristics in mechanically stirred airlift loop reactors with or without static mixers. Chin J Chem Eng 2000;8 (3):208–11. 链接1

[97] Meng AX, Hill GA, Dalai AK. Hydrodynamic characteristics in an external loop airlift bioreactor containing a spinning sparger and a packed bed. Ind Eng Chem Res 2002;41(9):2124–8. 链接1

[98] Wu XX, Merchuk JC. Measurement of fluid flow in the downcomer of an internal loop airlift reactor using an optical trajectory-tracking system. Chem Eng Sci 2003;58(8):1599–614. 链接1

[99] Pi K, Huang L, Li Z, Gao L, Gerson AR. Oxygen mass transfer characteristics in an internal-loop airlift reactor with preset trumpet-shaped riser. Asia-Pac J Chem Eng 2014;9(6):834–44. 链接1

[100] Krichnavaruk S, Pavasant P. Analysis of gas–liquid mass transfer in an airlift contactor with perforated plates. Chem Eng J 2002;89(1–3):203–11. 链接1

[101] Vorapongsathorn T, Wongsuchoto P, Pavasant P. Performance of airlift contactors with baffles. Chem Eng J 2001;84(3):551–6. 链接1

[102] Zhang TW, Wang JF, Wang TF, Lin J, Jin Y. Effect of internal on the hydrodynamics in external-loop airlift reactors. Chem Eng Process 2005;44 (1):81–7. 链接1

[103] Yu W, Wang T, Song F, Wang Z. Investigation of the gas layer height in a multistage internal-loop airlift reactor. Ind Eng Chem Res 2009;48 (20):9278–85. 链接1

[104] Yu W, Wang T, Liu M, Song F. Investigation of operation regimes in a multistage internal-loop airlift reactor. Ind Eng Chem Res 2010;49 (22):11752–9. 链接1

[105] Hsu CH, Chu YF, Argin-Soysal S, Hahm TS, Lo YM. Effects of surface characteristics and xanthan polymers on the immobilization of Xanthomonas campestris to fibrous matrices. J Food Sci 2004;69(9):E441–8. 链接1

[106] Kilonzo P, Margaritis A, Bergougnou M. Airlift-driven fibrous-bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells. J Biotechnol 2009;143(1):60–8. 链接1

[107] Nikakhtari H, Hill GA. Enhanced oxygen mass transfer in an external loop airlift bioreactor using a packed bed. Ind Eng Chem Res 2005;44(4):1067–72. 链接1

[108] Nikakhtari H, Hill GA. Volatile organic chemical mass transfer in an external loop airlift bioreactor with a packed bed. Ind Eng Chem Res 2005;44 (24):9299–306. 链接1

[109] Nikakhtari H, Hill GA. Continuous bioremediation of phenol-polluted air in an external loop airlift bioreactor with a packed bed. J Chem Technol Biotechnol 2006;81(6):1029–38. 链接1

[110] Hamood-ur-Rehman M, Dahman Y, Ein-Mozaffari F. Investigation of mixing characteristics in a packed-bed external loop airlift bioreactor using tomography images. Chem Eng J 2012;213:50–61. 链接1

[111] Hamood-ur-Rehman M, Ein-Mozaffari F, Dahman Y. Dynamic and local gas holdup studies in external loop recirculating airlift reactor with two rolls of fiberglass packing using electrical resistance tomography. J Chem Technol Biotechnol 2013;88(5):887–96. 链接1

[112] Moraveji MK, Sajjadi B, Jafarkhani M, Davarnejad R. Experimental investigation and CFD simulation of turbulence effect on hydrodynamic and mass transfer in a packed bed airlift internal loop reactor. Int Commun Heat Mass Transfer 2011;38(4):518–24. 链接1

[113] Kilonzo PM, Margaritis A, Bergougnou MA. Hydrodynamics and mass transfer characteristics in an inverse internal loop airlift-driven fibrous-bed bioreactor. Chem Eng J 2010;157(1):146–60. 链接1

[114] Nikakhtari H, Hill GA. Hydrodynamic and oxygen mass transfer in an external loop airlift bioreactor with a packed bed. Biochem Eng J 2005;27(2):138–45. 链接1

[115] Tekic MN, Sijacki IM, Tokic MS, Kojic PS, Petrovic DL, Lukic NL, et al. Hydrodynamics of self-agitated draft tube airlift reactor. Chem Ind Chem Eng Q 2014;20(1):59–69. 链接1

[116] Lukic´ NL, Šijacˇki IM, Kojic´ PS, Popovic´ SS, Tekic´ MN, Petrovic´ DL. Enhanced hydrodynamics in a novel external-loop airlift reactor with self-agitated impellers. J Taiwan Inst Chem Eng 2016;68:40–50. 链接1

[117] Benham CB, Yakobson DL, Bohn MS, inventors; Rentech Inc., Res USA LLC, assignees. Catalyst/wax separation device for slurry Fischer–Tropsch reactor. United Sates patent US 6068760A. 2000 May 30.

[118] Pashkova A, Svajda K, Dittmeyer R. Direct synthesis of hydrogen peroxide in a catalytic membrane contactor. Chem Eng J 2008;139(1):165–71. 链接1

[119] Qi Y, Chen M, Liang S, Yang W, Zhao J. Micro-patterns of Au@SiO2 core–shell nanoparticles formed by electrostatic interactions. Appl Surf Sci 2008;254 (6):1684–90. 链接1

[120] Liu H, Wang Y, Han T, Huang Q. Influence of vortex finder configurations on separation of fine particles. CIESC J 2017;68(5):1921–31. 链接1

[121] Liu H, Han T, Wang Y, Huang Q. Influence of new outlet configurations with baffle on hydrocycloneon separation performance. CIESC J 2018;69 (5):2081–8. 链接1

[122] Rytter E, Lian P, Myrstad T, Roterud PT, Solbakken A, inventors; Statoil ASA, assignee. Method of conducting catalytic converter multi-phase reaction. United States patent US 5422375A 1995 Jun 6. 链接1

[123] Jager B, Steynberg AP, Inga JR, Kelfkens RC, Smith MA, Malherbe FEJ, inventors; Sasol Chemical Industries (Pty) Ltd., Sasol Technology Pty Ltd., assignees. Process for producing liquid and, optionally, gaseous products from gaseous reactants. United States patent US 5599849A. 1997 Feb 4.

[124] Anderson JH, inventor; Texaco Inc., assignee. Internal filter for Fischer– Tropsch catalyst/wax separation. United States patent US 6652760B2 2003 Nov 25. 链接1

[125] Clerici GCE, Belmonte G, invemtors;. ENI SpA, Institut Francais du Petrole, EniTechnologie SpA, assignees. Process for the production in continuous of hydrocarbons from synthesis gas in slurry reactions and for the separation of the liquid phase produced from the solid phase. United Kingdom patent GB 2403433B 2004 Jun 11. 链接1

[126] White CM, Quiring MS, Jensen KL, Hickey RF, Gillham LD, inventors; US Department of Energy, assignee. Separation of catalyst from Fischer–Tropsch slurry. United States patent US 5827903A. 1998 Oct 27.

[127] Hu L, Tang X, Zhang Z, Zhu Z, inventors; Sinopec, Sinopec Research Institute of Petroleum Processing, assignees. [A slurry bed reaction and separation equipment]. China patent CN 202823321U. 2013 Mar 27. Chinese.

[128] Hu L, Tang X, Zhang Z, Zhu Z, inventors; Sinopec, Sinopec Research Institute of Petroleum Processing, assignees. [A slurry airlift loop reactor and continuous separation equipment]. China patent CN 203018065U. 2013 Jun 26. Chinese.

[129] Papari S, Kazemeini M, Fattahi M. Modelling-based optimisation of the direct synthesis of dimethyl ether from syngas in a commercial slurry reactor. Chin J Chem Eng 2013;21(6):611–21. 链接1

[130] Thorat BN, Joshi JB. Regime transition in bubble columns: experimental and predictions. Exp Therm Fluid Sci 2004;28(5):423–30. 链接1

[131] Nabipoor Hassankiadeh M, Haghtalab A. Product distribution of Fischer– Tropsch synthesis in a slurry bubble column reactor based on Langmuir– Freundlich isotherm. Chem Eng Commun 2013;200(9):1170–86. 链接1

[132] Van der Laan GP, Beenackers AACM, Krishna R. Multicomponent reaction engineering model for Fe-catalyzed Fischer–Tropsch synthesis in commercial scale slurry bubble column reactors. Chem Eng Sci 1999;54(21):5013–9. 链接1

[133] Forret A, Schweitzer JM, Gauthier T, Krishna R, Schweich D. Scale up of slurry bubble reactors. Oil Gas Sci Technol 2006;61(3):443–58. 链接1

[134] Xing C, Wang T, Wang J. Experimental study and numerical simulation with a coupled CFD-PBM model of the effect of liquid viscosity in a bubble column. Chem Eng Sci 2013;95:313–22. 链接1

[135] Van Baten JM, Krishna R. Eulerian simulation strategy for scaling up a bubble column slurry reactor for Fischer–Tropsch synthesis. Ind Eng Chem Res 2004;43(16):4483–93. 链接1

[136] Snape JB, Fialova M, Zahradnik J, Thomas NH. Hydrodynamic studies in an external loop airlift reactor containing aqueous electrolyte and sugar solutions. Chem Eng Sci 1992;47(13–14):3387–94. 链接1

[137] Luo L, Liu F, Xu Y, Yuan J. Hydrodynamics and mass transfer characteristics in an internal loop airlift reactor with different spargers. Chem Eng J 2011;175:494–504. 链接1

[138] Xiao H, Geng S, Chen A, Yang C, Gao F, He T, et al. Bubble formation in continuous liquid phase under industrial jetting conditions. Chem Eng Sci 2019;200:214–24. 链接1

[139] Lin J, Han M, Wang T, Zhang T, Wang J, Jin Y. Influence of the gas distributor on the local hydrodynamic behavior of an external loop airlift reactor. Chem Eng J 2004;102(1):51–9. 链接1

[140] Wei C, Wu B, Li G, Chen K, Jiang M, Ouyang P. Comparison of the hydrodynamics and mass transfer characteristics in internal-loop airlift bioreactors utilizing either a novel membrane-tube sparger or perforated plate sparger. Bioprocess Biosyst Eng 2014;37(11):2289–304. 链接1

[141] Hooshyar N, Hamersma PJ, Mudde RF, Van Ommen JR. Intensified operation of slurry bubble columns using structured gas injection. Can J Chem Eng 2010;88(4):533–42. 链接1

[142] Hooshyar N, Hamersma PJ, Mudde RF, Van Ommen JR. Gas fraction and bubble dynamics in structured slurry bubble columns. Ind Eng Chem Res 2010;49(21):10689–97. 链接1

[143] Vial C, Camarasa E, Poncin S, Wild G, Midoux N, Bouillard J. Study of hydrodynamic behaviour in bubble columns and external loop airlift reactors through analysis of pressure fluctuations. Chem Eng Sci 2000;55 (15):2957–73. 链接1

[144] Cao C, Dong S, Geng Q, Guo Q. Hydrodynamics and axial dispersion in a gas– liquid–(solid) EL-ALR with different sparger designs. Ind Eng Chem Res 2008;47(11):4008–17. 链接1

[145] Han L, Al-Dahhan MH. Gas–liquid mass transfer in a high pressure bubble column reactor with different sparger designs. Chem Eng Sci 2007;62(1– 2):131–9. 链接1

[146] Michele V, Hempel DC. Liquid flow and phase holdup-measurement and CFD modeling for two- and three-phase bubble columns. Chem Eng Sci 2002;57 (11):1899–908. 链接1

[147] Li H, Prakash A. Heat transfer and hydrodynamics in a three-phase slurry bubble column. Ind Eng Chem Res 1997;36(11):4688–94. 链接1

[148] Gandhi B, Prakash A, Bergougnou MA. Hydrodynamic behavior of slurry bubble column at high solids concentrations. Powder Technol 1999;103 (2):80–94. 链接1

[149] Yang GQ, Du B, Fan LS. Bubble formation and dynamics in gas–liquid–solid fluidization—a review. Chem Eng Sci 2007;62(1–2):2–27. 链接1

[150] Maretto C, Krishna R. Modelling of a bubble column slurry reactor for Fischer–Tropsch synthesis. Catal Today 1999;52(2–3):279–89. 链接1

[151] Rabha S, Schubert M, Wagner M, Lucas D, Hampel U. Bubble size and radial gas hold-up distributions in a slurry bubble column using ultrafast electron beam X-ray tomography. AIChE J 2013;59(5):1709–22. 链接1

[152] Wang TF, Wang JF, Yang WG, Jin Y. Experimental study on bubble behavior in gas–liquid–solid three-phase circulating fluidized beds. Powder Technol 2003;137(1–2):83–90. 链接1

[153] Abdel-Aziz MH, Nirdosh I, Sedahmed GH. Liquid–solid mass and heat transfer behavior of a concentric tube airlift reactor. Int J Heat Mass Transfer 2013;58 (1–2):735–9. 链接1

[154] Guth E, Simha R. Explorations of the viscosity of suspensions and solutions 3. The viscosity of sphere suspensions (the calculation of wall influence and the exchange effect in viscosity as well as in rotating spheres). Kolloid-Zeitschrift 1936;74(3):266–75. German. 链接1

[155] Vand V. Viscosity of solutions and suspensions. I. Theory. J Phys Colloid Chem 1948;52(2):277–99. 链接1

[156] Roscoe R. The viscosity of suspensions of rigid spheres. Br J Appl Phys 1952;3 (8):267–9. 链接1

[157] Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys 1952;20(4):571. 链接1

[158] Bakopoulos A. Fluid dynamics and mixing in three-phase coal and oil residue hydrogenation sieve cascade reactors. Chem Eng Sci 2001;56(17):5131–45. 链接1

[159] Thomas DG. Transport characteristics of suspension: VIII. a note on the viscosity of Newtonian suspensions of uniform spherical particles. J Colloid Sci 1965;20(3):267–77. 链接1

[160] Ford TF. Viscosity-concentration and fluidity-concentration relationships for suspensions of spherical particles in Newtonian liquids. J Phys Chem 1960;64 (9):1168–74. 链接1

[161] Eilers H. The viscosity of the emulsion of highly viscous substances as function of concentration. Kolloid-Zeitschrift 1941;97(3):313–21. German. 链接1

[162] Chong JS, Christiansen EB, Baer AD. Rheology of concentrated suspensions. J Appl Polym Sci 1971;15(8):2007–21. 链接1

[163] Fedors RF. Relationships between viscosity and concentration for Newtonian suspensions. J Colloid Interface Sci 1974;46(3):545–7. 链接1

[164] Frankel NA, Acrivos A. On the viscosity of a concentrated suspension of solid spheres. Chem Eng Sci 1967;22(6):847–53. 链接1

[165] Quemada D. Rheology of concentrated disperse systems and minimum energy dissipation principle. I. Viscosity–concentration relationship. Rheol Acta 1977;16(1):82–94. 链接1

[166] Mooney M. The viscosity of a concentrated suspension of spherical particles. J Colloid Sci 1951;6(2):162–70. 链接1

[167] Kawase Y, Ulbrecht JJ. Rheological properties of suspensions of solid spheres in non-Newtonian fluids. Chem Eng Commun 1983;20(3–4):127–36. 链接1

[168] Krieger IM, Dougherty TJ. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 1959;3(1):137–52. 链接1

[169] Sengun MZ, Probstein RF. High-shear-limit viscosity and the maximum packing fraction in concentrated monomodal suspensions. Physicochem Hydrodyn 1989;11(2):229–41. 链接1

[170] Rabha S, Schubert M, Hampel U. Hydrodynamic studies in slurry bubble columns: experimental and numerical study. Chem Ing Tech 2013;85 (7):1092–8. 链接1

[171] Chilekar VP, Warnier MJF, Van der Schaaf J, Kuster BFM, Schouten JC, Van Ommen JR. Bubble size estimation in slurry bubble columns from pressure fluctuations. AIChE J 2005;51(7):1924–37. 链接1

[172] Luo XK, Lee DJ, Lau R, Yang GQ, Fan LS. Maximum stable bubble size and gas holdup in high-pressure slurry bubble columns. AIChE J 1999;45(4):665–80. 链接1

[173] Vandu CO, Koop K, Krishna R. Large bubble sizes and rise velocities in a bubble column slurry reactor. Chem Eng Technol 2004;27(11):1195–9. 链接1

[174] Kelkar BG, Shah YT, Carr NL. Hydrodynamics and axial mixing in a threephase bubble column. Effects of slurry properties. Ind Eng Chem Process Des Dev 1984;23(2):308–13. 链接1

[175] Sada E, Kumazawa H, Lee CH. Influences of suspended fine particles on gas holdup and mass transfer characteristics in a slurry bubble column. AIChE J 1986;32(5):853–6. 链接1

[176] Jamialahmadi M, Müller-Steinhagen H. Effect of solid particles on gas hold-up in bubble columns. Can J Chem Eng 1991;69(1):390–3. 链接1

[177] Mena PC, Ruzicka MC, Rocha FA, Teixeira JA, Drahoš J. Effect of solids on homogeneous–heterogeneous flow regime transition in bubble columns. Chem Eng Sci 2005;60(22):6013–26. 链接1

[178] Milivojevic M, Pavlou S, Bugarski B. Liquid velocity in a high-solids-loading three-phase external-loop airlift reactor. J Chem Technol Biotechnol 2012;87 (11):1529–40. 链接1

[179] Murray P, Fan LS. Axial solids distribution in slurry bubble columns. Ind Eng Chem Res 1989;28(11):1697–703. 链接1

[180] Zhang K. Axial solid concentration distribution in tapered and cylindrical bubble columns. Chem Eng J 2002;86(3):299–307. 链接1

[181] Shaikh A, Al-Dahhan M. Scale-up of bubble column reactors: a review of current state-of-the-art. Ind Eng Chem Res 2013;52(24):8091–108. 链接1

[182] Onozaki M, Namiki Y, Ishibashi H, Kobayashi M, Itoh H, Hiraide M, et al. A process simulation of the NEDOL coal liquefaction process. Fuel Process Technol 2000;64(1–3):253–69. 链接1

[183] Jakobsen HA, Lindborg H, Dorao CA. Modeling of bubble column reactors: progress and limitations. Ind Eng Chem Res 2005;44(14):5107–51. 链接1

[184] Cao C, Dong S, Guo Q. Experimental and numerical simulation for gas–liquid phases flow structure in an external-loop airlift reactor. Ind Eng Chem Res 2007;46(22):7317–27. 链接1

[185] Joshi JB. Computational flow modelling and design of bubble column reactors. Chem Eng Sci 2001;56(21–22):5893–933. 链接1

[186] Zhang L, Huang Q. Research progress in the modeling theory of airlift loop reactor. Chin J Process Eng 2011;11(1):86–97. 链接1

[187] Tomiyama A. Drag, lift and virtual mass forces acting on a single bubble. In: Proceedings of the Third International Symposium on Two-Phase Flow Modeling and Experimentation; 2004 Sept 22–24; Pisa, Italy; 2004. 链接1

[188] Troshko AA, Hassan YA. A two-equation turbulence model of turbulent bubbly flows. Int J Multiph Flow 2001;27(11):1965–2000. 链接1

[189] Pfleger D, Becker S. Modelling and simulation of the dynamic flow behaviour in a bubble column. Chem Eng Sci 2001;56(4):1737–47. 链接1

[190] Zhang D, Deen NG, Kuipers JAM. Numerical simulation of the dynamic flow behavior in a bubble column: a study of closures for turbulence and interface forces. Chem Eng Sci 2006;61(23):7593–608. 链接1

[191] Huang Q, Yang C, Yu G, Mao ZS. CFD simulation of hydrodynamics and mass transfer in an internal airlift loop reactor using a steady two-fluid model. Chem Eng Sci 2010;65(20):5527–36. 链接1

[192] Huang Q, Yang C, Yu G, Mao ZS. Sensitivity study on modeling an internal airlift loop reactor using a steady 2D two-fluid model. Chem Eng Technol 2008;31(12):1790–8. 链接1

[193] Oey RS, Mudde RF, Portela LM, Van den Akker HEA. Simulation of a slurry airlift using a two-fluid model. Chem Eng Sci 2001;56(2):673–81. 链接1

[194] Wang TF, Wang JF, Jin Y. Experimental study and CFD simulation of hydrodynamic behaviours in an external loop airlift slurry reactor. Can J Chem Eng 2004;82(6):1183–90. 链接1

[195] Chen P, Dudukovic´ MP, Sanyal J. Three-dimensional simulation of bubble column flows with bubble coalescence and breakup. AIChE J 2005;51 (3):696–712. 链接1

[196] Chen P, Sanyal J, Dudukovic´ MP. Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures. Chem Eng Sci 2005;60(4):1085–101. 链接1

[197] Frank T, Zwart PJ, Shi JM, Krepper E, Lucas D, Rohde U. Inhomogeneous MUSIG model—a population balance approach for polydispersed bubbly flows. In: Proceedings of International Conference for Nuclear Energy for New Europe; 2005 Sept 5–8; Bled, Slovenia; 2005. 链接1

[198] Yang N, Xiao Q. A mesoscale approach for population balance modeling of bubble size distribution in bubble column reactors. Chem Eng Sci 2017;170:241–50. 链接1

[199] Lehr F, Millies M, Mewes D. Bubble-size distributions and flow fields in bubble columns. AIChE J 2004;48(11):2426–43. 链接1

[200] Ni X, Jian H, Fitch AW. Computational fluid dynamic modelling of flow patterns in an oscillatory baffled column. Chem Eng Sci 2002;57 (14):2849–62. 链接1

[201] Lestinsky P, Vecer M, Vayrynen P, Wichterle K. The effect of the draft tube geometry on mixing in a reactor with an internal circulation loop—a CFD simulation. Chem Eng Process 2015;94:29–34. 链接1

[202] Pan Y, Dudukovic MP, Chang M. Numerical investigation of gas-driven flow in 2-D bubble columns. AIChE J 2004;46(3):434–49. 链接1

[203] Luo H, Svendsen HF. Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J 1996;42(5):1225–33. 链接1

[204] Prince MJ, Blanch HW. Bubble coalescence and break-up in air-sparged bubble columns. AIChE J 1990;36(10):1485–99. 链接1

[205] Lo S. Application of MUSIG model to bubbly flows. AEA Technol 1996;230:8216–46. 链接1

[206] Bhole MR, Joshi JB, Ramkrishna D. CFD simulation of bubble columns incorporating population balance modeling. Chem Eng Sci 2008;63 (8):2267–82. 链接1

[207] Pendyala VRR, Jacobs G, Luo M, Davis BH. Fischer–Tropsch synthesis: effect of start-up solvent in a slurry reactor. Catal Lett 2013;143(5):395–400. 链接1

[208] Sehabiague L, Lemoine R, Behkish A, Heintz YJ, Sanoja M, Oukaci R, et al. Modeling and optimization of a large-scale slurry bubble column reactor for producing 10,000 bbl/day of Fischer–Tropsch liquid hydrocarbons. J Chin Inst Chem Eng 2008;39(2):169–79. 链接1

[209] Choi KH, Chisti Y, Moo-Young M. Comparative evaluation of hydrodynamic and gas–liquid mass transfer characteristics in bubble column and airlift slurry reactors. Chem Eng J Biochem Eng J 1996;62(3):223–9. 链接1

[210] Lu X, Ding J, Wang Y, Shi J. Comparison of the hydrodynamics and mass transfer characteristics of a modified square airlift reactor with common airlift reactors. Chem Eng Sci 2000;55(12):2257–63. 链接1

[211] Ren X, Fang D, Jin J, Gao J. Study on flow patterns in different types of direct coal liquefaction reactors. Asia-Pac J Chem Eng 2009;4(5):563–7. 链接1

[212] Han T, Liu H, Xiao H, Chen A, Huang Q. Experimental study of the effects of apex section internals and conical section length on the performance of solid–liquid hydrocyclone. Chem Eng Res Des 2019;145:12–8. 链接1

[213] Dudukovic MP. Reaction engineering: status and future challenges. Chem Eng Sci 2010;65(1):3–11. 链接1

相关研究