期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第11卷 第4期 doi: 10.1016/j.eng.2021.03.022

自供能主动式振动控制——从概念到模拟测试

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China

收稿日期: 2020-08-07 修回日期: 2020-11-30 录用日期: 2021-03-09 发布日期: 2021-06-30

下一篇 上一篇

摘要

主动式振动控制技术通常拥有优异的控制性能,但其在大型结构应用中常常伴随着巨大的能耗,使得我们在实际工程应用中较难看到它的身影。针对这一问题,本文创新性地提出了一种全新的解决方案:自供能的主动式振动控制系统;并针对性地对其拓扑设计、工作原理、能量流动等方面进行了介绍。通过对振动过程中能量流动的详细分析,我们进一步确认了系统的自供能可行性。此外,我们于实验室内搭建了一套所提出的自供能主动式控制系统,并成功将其应用到一个小型主动隔振台上。通过对解析、数值和实验结果的一系列探究,这个新型系统的有效性与可行性得到了充分的印证。预期这套新型装置可以非常容易地推广到其他多种工程领域中来实现所期望的主动控制效果。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

参考文献

[ 1 ] Kuo SM, Morgan DR. Active noise control: a tutorial review. Proc IEEE 1999;87 (6):943–75. 链接1

[ 2 ] Sharp RS, Crolla DA. Road vehicle suspension system design—a review. Veh Syst Dyn 1987;16(3):167–92. 链接1

[ 3 ] Cao D, Song X, Ahmadian M. Editors’ perspectives: road vehicle suspension design, dynamics, and control. Veh Syst Dyn 2011;49(1–2):3–28. 链接1

[ 4 ] He W, Ge SS. Dynamic modeling and vibration control of a flexible satellite. IEEE Trans Aerosp Electron Syst 2015;51(2):1422–31. 链接1

[ 5 ] Soong TT, Costantinou MC, edtiors. Passive and active structural vibration control in civil engineering. New York: Springer-Verlag Wien; 1994.

[ 6 ] Housner GW, Bergman LA, Caughey TK, Chassiakos AG, Claus RO, Masri SF, et al. Structural control: past, present, and future. J Eng Mech 1997;123 (9):897–971. 链接1

[ 7 ] Shen W, Zhu S, Xu YL, Zhu H. Energy regenerative tuned mass dampers in highrise buildings. Struct Contr Health Monit 2018;25(2):1–18. 链接1

[ 8 ] Zhu S, Shen W, Xu Y. Linear electromagnetic devices for vibration damping and energy harvesting: modeling and testing. Eng Struct 2012;34:198–212. 链接1

[ 9 ] Zhang C, Ou J. Control structure interaction of electromagnetic mass damper system for structural vibration control. J Eng Mech 2008;134(5):428–37. 链接1

[10] Zhang C, Ou J. Modeling and dynamical performance of the electromagnetic mass driver system for structural vibration control. Eng Struct 2015;82:93–103. 链接1

[11] Zhu S, Shen W, Qian X. Dynamic analogy between an electromagnetic shunt damper and a tuned mass damper. Smart Mater Struct 2013;22 (11):1–11. 链接1

[12] Gonzalez-Buelga A, Clare LR, Neild SA, Jiang JZ, Inman DJ. An electromagnetic inerter-based vibration suppression device. Smart Mater Struct 2015;24 (5):055015. 链接1

[13] Li JY, Zhu S, Shi X, Shen W. Electromagnetic shunt damper for bridge cable vibration mitigation: full-scale experimental study. J Struct Eng 2020;146 (1):04019175. 链接1

[14] Zuo L, Cui W. Dual-functional energy-harvesting and vibration control: electromagnetic resonant shunt series tuned mass dampers. J Vib Acoust 2013;135(5):051018. 链接1

[15] Zhang R, Wang X, John S. A comprehensive review of the techniques on regenerative shock absorber systems. Energies 2018;11(5):1–43. 链接1

[16] Ko J, Ko S, Son H, Yoo B, Cheon J, Kim H. Development of brake system and regenerative braking cooperative control algorithm for automatictransmission-based hybrid electric vehicles. IEEE Trans Vehicular Technol 2015;64(2):431–40. 链接1

[17] Lin CL, Hung HC, Li JC. Active control of regenerative brake for electric vehicles. Actuators 2018;7(4):1–14. 链接1

[18] Nian X, Peng F, Zhang H. Regenerative braking system of electric vehicle driven by brushless DC motor. IEEE Trans Ind Electron 2014;61(10):5798–808. 链接1

[19] Zhang J, Lv C, Gou J, Kong D. Cooperative control of regenerative braking and hydraulic braking of an electrified passenger car. Proc Inst Mech Eng D J Automob Eng 2012;226(10):1289–302. 链接1

[20] Cho SW, Jung HJ, Lee IW. Smart passive system based on magnetorheological damper. Smart Mater Struct 2005;14(4):707–14. 链接1

[21] Kim IH, Jung HJ, Koo JH. Experimental evaluation of a self-powered smart damping system in reducing vibrations of a full-scale stay cable. Smart Mater Struct 2010;19(11):115027. 链接1

[22] Chen C, Liao WH. A self-sensing magnetorheological damper with power generation. Smart Mater Struct 2012;21(2):025014. 链接1

[23] Scruggs JT, Iwan WD. Structural control with regenerative force actuation networks. Struct Contr Health Monit 2005;12(1):25–45. 链接1

[24] Suda Y, Nakadai S, Nakano K. Hybrid suspension system with skyhook control and energy regeneration (development of self-powered active suspension). Vehicle Syst Dyn 1998;29(S1):619–34. 链接1

[25] Nakano K, Suda Y. Combined type self-powered active vibration control of truck cabins. Veh Syst Dyn 2004;41(6):449–73. 链接1

[26] Tang X, Zuo L. Simultaneous energy harvesting and vibration control of structures with tuned mass dampers. J Intell Mater Syst Struct 2012;23 (18):2117–27. 链接1

[27] Kawamoto Y, Suda Y, Inoue H, Kondo T. Modeling of electromagnetic damper for automobile suspension. J Syst Des Dyn 2007;1(3):524–35. 链接1

[28] Li J, Zhu S, Shen J. Enhance the damping density of eddy current and electromagnetic dampers. Smart Struct Syst 2019;24(1):15–26. 链接1

[29] Hsieh CY, Moallem M, Golnaraghi F. A bidirectional boost converter with application to a regenerative suspension system. IEEE Trans Vehicular Technol 2016;65(6):4301–11. 链接1

[30] Zuo L, Tang X. Large-scale vibration energy harvesting. J Intell Mater Syst Struct 2013;24(11):1405–30. 链接1

[31] Liu Y, Tian G, Wang Y, Lin J, Zhang Q, Hofmann HF. Active piezoelectric energy harvesting: general principle and experimental demonstration. J Intell Mater Syst Struct 2009;20(5):575–85. 链接1

[32] Bowden JA, Burrow SG, Cammarano A, Clare LR, Mitcheson PD. Switched-mode load impedance synthesis to parametrically tune electromagnetic vibration energy harvesters. IEEE/ASME Trans Mechatron 2015;20(2):603–10. 链接1

[33] Mitcheson PD, Toh TT, Wong KH, Burrow SG, Holmes AS. Tuning the resonant frequency and damping of an electromagnetic energy harvester using power electronics. IEEE Trans Circuits Syst II Express Briefs 2011;58(12):792–6. 链接1

[34] Karnopp D, Crosby MJ, Harwood RA. Vibration control using semi-active force generators. J Eng Ind 1974;96(2):619–26. 链接1

相关研究