期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第9期 doi: 10.1016/j.eng.2021.04.021

数据驱动的信息物理生产系统——迈向安全、高效、分布式智能制造

a Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
b Singapore Institute of Manufacturing Technology, Singapore 138634, Singapore
c School of Economics and Management, Tsinghua University, Beijing 100084, China
d Zhigui Internet Technology, Beijing 100080, China
e China Industrial Control Systems Cyber Emergency Response Team, Beijing 100040, China
f Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

收稿日期: 2020-08-31 修回日期: 2020-11-14 录用日期: 2021-04-02 发布日期: 2021-07-24

下一篇 上一篇

摘要

随着工业4.0 和智能制造等概念和系统的普及,传统制造业将见证向新模式的转型,以更好地响应用户的需求并实现安全、高效、智能化的操作。在此背景下,本文聚焦于信息物理生产系统(CPPS)的概念,从整体上阐述了CPPS在这一产业转型中的三个关键驱动作用,即数据驱动的生产系统、分布式的智能制造和保证数据安全的集成区块链技术。通过这三个方面的具体技术和系统实现,基于数据驱动的建模和优化,智能信息物理系统将助力流程工业和制造业转型。同时,分布式的智能制造可以更高效地实现产业升级和低碳化发展。区块链技术可以进一步确保数据共享的可靠性和安全性,实现跨子系统的整合。本文详细分析了最近发表的文献研究和行业相关案例支持,并对现有挑战和发展方向进行了总结展望。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Chen B, Wan J, Shu L, Li P, Mukherjee M, Yin B. Smart factory of Industry 4.0: key technologies, application case, and challenges. IEEE Access 2018;6:6505–19. 链接1

[ 2 ] Lu Y, Xu X, Wang L. Smart manufacturing process and system automation—a critical review of the standards and envisioned scenarios. J Manuf Syst 2020;56:312–25. 链接1

[ 3 ] Suvarna M, Büth L, Hejny J, Mennenga M, Li J, Ng YT, et al. Smart manufacturing for smart cities—overview, insights, and future directions. Adv Intel Systems 2020;2(10):2000043. 链接1

[ 4 ] A platform for actors in the production area in Sweden—Produktion2030 [Internet]. Stockholm: Produktion2030; [cited 2020 Aug 27]. Available from: https://produktion2030.se/en/.

[ 5 ] Wiktorsson M, Noh SD, Bellgran M, Hanson L. Smart Factories: South Korean and Swedish examples on manufacturing settings. Procedia Manuf 2018;25:471–8. 链接1

[ 6 ] Tao F, Qi Q, Liu A, Kusiak A. Data-driven smart manufacturing. J Manuf Syst 2018;48:157–69. 链接1

[ 7 ] Kusiak A. Fundamentals of smart manufacturing: a multi-thread perspective. Annu Rev Contr 2019;47:214–20. 链接1

[ 8 ] Shang C, You F. Data analytics and machine learning for smart process manufacturing: recent advances and perspectives in the big data era. Engineering 2019;5(6):1010–6. 链接1

[ 9 ] Helo P, Suorsa M, Hao Y, Anussornnitisarn P. Toward a cloud-based manufacturing execution system for distributed manufacturing. Comput Ind 2014;65(4):646–56. 链接1

[10] Frazzon EM, Agostino ÍRS, Broda E, Freitag M. Manufacturing networks in the era of digital production and operations: a socio–cyber–physical perspective. Annu Rev Contr 2020;49:288–94. 链接1

[11] Zhong RY, Xu X, Klotz E, Newman ST. Intelligent manufacturing in the context of industry 4.0: a review. Engineering 2017;3(5):616–30. 链接1

[12] Wang Y, Ma HS, Yang JH, Wang KS. Industry 4.0: a way from mass customization to mass personalization production. Adv Manuf 2017;5 (4):311–20. 链接1

[13] Mourtzis D, Doukas M, Psarommatis F. Design and operation of manufacturing networks for mass customisation. CIRP Ann 2013;62(1):467–70. 链接1

[14] Matt DT, Rauch E, Dallasega P. Trends towards distributed manufacturing systems and modern forms for their design. Procedia CIRP 2015;33: 185–90. 链接1

[15] Mourtzis D, Doukas M. Decentralized manufacturing systems review: challenges and outlook. Logistics Res 2012;5(3-4):113–21. 链接1

[16] Monostori L, Kádár B, Bauernhansl T, Kondoh S, Kumara S, Reinhart G, et al. Cyber–physical systems in manufacturing. CIRP Ann 2016;65(2):621–41. 链接1

[17] Tao F, Qi Q, Wang L, Nee AYC. Digital twins and cyber–physical systems toward smart manufacturing and Industry 4.0: correlation and comparison. Engineering 2019;5(4):653–61. 链接1

[18] Zhang L, Zhou L, Ren L, Laili Y. Modeling and simulation in intelligent manufacturing. Comput Ind 2019;112:103123. 链接1

[19] Monostori L. Cyber–physical production systems: roots, expectations and R&D challenges. Proc CIRP 2014;17:9–13. 链接1

[20] Perianes-Rodriguez A, Waltman L, van Eck NJ. Constructing bibliometric networks: a comparison between full and fractional counting. J Informetrics 2016;10(4):1178–95. 链接1

[21] Song Y, Lin J, Tang M, Dong S. An internet of energy things based on wireless LPWAN. Engineering 2017;3(4):460–6. 链接1

[22] Hasan M, Starly B. Decentralized cloud manufacturing-as-a-service (CMaaS) platform architecture with configurable digital assets. J Manuf Syst 2020;56:157–74. 链接1

[23] Yu C, Xu X, Yu S, Sang Z, Yang C, Jiang X. Shared manufacturing in the sharing economy: concept, definition and service operations. Comput Ind Eng 2020;146:106602. 链接1

[24] Zhou J, Zhou Y, Wang B, Zang J. Human–cyber–physical systems (HCPSs) in the context of new-generation intelligent. Manuf Eng 2019;5(4):624–36. 链接1

[25] Pacaux-Lemoine MP, Trentesaux D, Zambrano Rey G, Millot P. Designing intelligent manufacturing systems through Human–Machine Cooperation principles: a human-centered approach. Comput Ind Eng 2017;111:581–95. 链接1

[26] Kadir BA, Broberg O, da Conceição CS. Current research and future perspectives on human factors and ergonomics in Industry 4.0. Comput Ind Eng 2019;137:106004.

[27] Romero D, Stahre J, Taisch M. The Operator 4.0: towards socially sustainable factories of the future. Comput Ind Eng 2020;139:106128.

[28] Dong Y, Qin SJ. Dynamic latent variable analytics for process operations and control. Comput Chem Eng 2018;114:69–80. 链接1

[29] Papananias M, McLeay TE, Mahfouf M, Kadirkamanathan V. A Bayesian framework to estimate part quality and associated uncertainties in multistage manufacturing. Comput Ind 2019;105:35–47. 链接1

[30] Dong Q, Kontar R, Li M, Xu G, Xu J. A simple approach to multivariate monitoring of production processes with non-Gaussian data. J Manuf Syst 2019;53:291–304. 链接1

[31] Gajjar S, Kulahci M, Palazoglu A. fault detection and diagnosis using sparse principal component analysis. J Process Contr 2018;67:112–28. 链接1

[32] Zhao C, Huang B. A full-condition monitoring method for nonstationary dynamic chemical processes with cointegration and slow feature analysis. AIChE J 2018;64(5):1662–81. 链接1

[33] Shang C, Yang F, Gao X, Huang X, Suykens JAK, Huang D. Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis. AIChE J 2015;61(11):3666–82. 链接1

[34] Zhong W, Jiang C, Peng X, Li Z, Qian F. Online quality prediction of industrial terephthalic acid hydropurification process using modified regularized slowfeature analysis. Ind Eng Chem Res 2018;57(29):9604–14. 链接1

[35] Wang F, Ju F, Kang N. Transient analysis and real-time control of geometric serial lines with residence time constraints. IISE Trans 2019;51 (7):709–28. 链接1

[36] Chen W, Liu H, Qi E. Discrete event-driven model predictive control for realtime work-in-process optimization in serial production systems. J Manuf Syst 2020;55:132–42. 链接1

[37] Wong WC, Chee E, Li J, Wang X. Recurrent neural network-based model predictive control for continuous pharmaceutical manufacturing. Mathematics 2018;6(11):242. 链接1

[38] Min Q, Lu Y, Liu Z, Su C, Wang B. Machine learning based digital twin framework for production optimization in petrochemical industry. Int J Inf Manage 2019;49:502–19. 链接1

[39] Shang C, Huang X, You F. Data-driven robust optimization based on kernel learning. Comput Chem Eng 2017;106:464–79. 链接1

[40] Ning C, You F. A data-driven multistage adaptive robust optimization framework for planning and scheduling under uncertainty. AIChE J 2017;63 (10):4343–69. 链接1

[41] Li K, Zhou T, Liu BH, Li H. A multi-agent system for sharing distributed manufacturing resources. Expert Syst Appl 2018;99:32–43 链接1

[42] Marques M, Agostinho C, Zacharewicz G, Jardim-Gonçalves R. Decentralized decision support for Intelligent manufacturing in Industry 4.0. JAISE 2017;9 (3):299–313. 链接1

[43] Poonpakdee P, Koiwanit J, Yuangyai C. Decentralized network building change in large manufacturing companies towards Industry 4.0. Proc Comput Sci 2017;110:46–53. 链接1

[44] Mocnej J, Pekar A, Seah WKG, Papcun P, Kajati E, Cupkova D, et al. Qualityenabled decentralized IoT architecture with efficient resources utilization. Robot Comput-Integr Manuf 2021;67:102001. 链接1

[45] Wang W, Koren Y. Scalability planning for reconfigurable manufacturing systems. J Manuf Syst 2012;31(2):83–91. 链接1

[46] Bodkhe U, Mehta D, Tanwar S, Bhattacharya P, Singh PK, Hong WC. A survey on decentralized consensus mechanisms for cyber physical systems. IEEE Access 2020;8:54371–401. 链接1

[47] Balador A, Ericsson N, Bakhshi Z. Communication middleware technologies for industrial distributed control systems: a literature review. In: Proceedings of 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA); 2017 Sep 12–15; Limassol, Cyprus; 2017, p. 1-6. 链接1

[48] Ding K, Jiang P, Su S. RFID-enabled social manufacturing system for interenterprise monitoring and dispatching of integrated production and transportation tasks. Robot Comput-Integr Manuf 2018;49:120–33. 链接1

[49] Block C, Lins D, Kuhlenkötter B. Approach for a simulation-based and eventdriven production planning and control in decentralized manufacturing execution systems. Procedia CIRP 2018;72:1351–6. 链接1

[50] Vespoli S, Grassi A, Guizzi G, Santillo LC. Evaluating the advantages of a novel decentralised scheduling approach in the Industry 4.0 and Cloud Manufacturing era. IFAC-PapersOnLine 2019;52(13):2170–6. 链接1

[51] Fu Y, Wang H, Huang M. Integrated scheduling for a distributed manufacturing system: a stochastic multi-objective model. Enterprise Inf Syst 2019;13 (4):557–73. 链接1

[52] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 2002;6(2):182–97. 链接1

[53] Ishibuchi H, Yoshida T, Murata T. Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans Evol Comput 2003;7(2):204–23. 链接1

[54] Kumar S, Manjrekar V, Singh V, Kumar Lad B. Integrated yet distributed operations planning approach: a next generation manufacturing planning system. J Manuf Syst 2020;54:103–22. 链接1

[55] Christofides PD, Scattolini R, Muñoz de la Peña D, Liu J. Distributed model predictive control: a tutorial review and future research directions. Comput Chem Eng 2013;51:21–41. 链接1

[56] Zhang J, Liu J. Distributed moving horizon state estimation for nonlinear systems with bounded uncertainties. J Process Contr 2013;23(9):1281–95. 链接1

[57] Farina M, Ferrari GP, Manenti F, Pizzi E. Assessment and comparison of distributed model predictive control schemes: application to a natural gas refrigeration plant. Comput Chem Eng 2016;89:192–203. 链接1

[58] Ravi A, Kaisare NS. Distributed model predictive control of a system with multi-rate and delayed measurements. In: Eden MR, Ierapetritou MG, Towler GP, editors. Computer aided chemical engineering. Amsterdam: Elsevier; 2018. p. 517–22. 链接1

[59] Yin X, Decardi-Nelson B, Liu J. Distributed monitoring of the absorption column of a post-combustion CO2 capture plant. Int J Adapt Control Signal Process 2020;34(6):757–76. 链接1

[60] Noor S, Yang W, Guo M, van Dam KH, Wang X. Energy Demand Side Management within micro-grid networks enhanced by blockchain. Appl Energy 2018;228:1385–98. 链接1

[61] Nawari NO, Ravindran S. Blockchain and the built environment: potentials and limitations. J Build Eng 2019;25:100832. 链接1

[62] Yu C, Jiang X, Yu S, Yang C. Blockchain-based shared manufacturing in support of cyber physical systems: concept, framework, and operation. Robot ComputIntegr Manuf 2020;64:101931. 链接1

[63] Lee J, Azamfar M, Singh J. A blockchain enabled Cyber–Physical System architecture for Industry 4.0 manufacturing systems. Manuf Lett 2019;20:34–9. 链接1

[64] Jeschke S, Brecher C, Meisen T, Özdemir D, Eschert T. Industrial Internet of Things and cyber manufacturing systems. In: Jeschke S, Brecher C, Song H, Rawat DB, editors. Industrial Internet of Things: cybermanufacturing systems. Cham: Springer International Publishing; 2017. p. 3–19. 链接1

[65] Mandolla C, Petruzzelli AM, Percoco G, Urbinati A. Building a digital twin for additive manufacturing through the exploitation of blockchain: a case analysis of the aircraft industry. Comput Ind 2019;109:134–52. 链接1

[66] Gonczol P, Katsikouli P, Herskind L, Dragoni N. Blockchain implementations and use cases for supply chains—a survey. IEEE Access 2020;8: 11856–71. 链接1

[67] Saberi S, Kouhizadeh M, Sarkis J, Shen L. Blockchain technology and its relationships to sustainable supply chain management. Int J Prod Res 2019;57 (7):2117–35. 链接1

[68] Leng J, Ruan G, Jiang P, Xu K, Liu Q, Zhou X, et al. Blockchain-empowered sustainable manufacturing and product lifecycle management in Industry 4.0: A survey. Renew Sustain Energy Rev 2020;132:110112.

[69] Angrish A, Craver B, Hasan M, Starly B. A case study for blockchain in manufacturing: ‘‘FabRec”: a prototype for peer-to-peer network of manufacturing nodes. Procedia Manuf 2018;26:1180–92. 链接1

[70] Pal K, Yasar AUH. Internet of Things and blockchain technology in apparel manufacturing supply chain data management. Procedia Comput Sci 2020;170:450–7. 链接1

[71] Barenji AV, Guo H, Wang Y, Li Z, Rong Y. Toward blockchain and fog computing collaborative design and manufacturing platform: support customer view. Robot Comput-Integr Manuf 2021;67:102043. 链接1

[72] Lohmer J, Lasch R. Blockchain in operations management and manufacturing: potential and barriers. Comput Ind Eng 2020;149:106789. 链接1

[73] Liu A, Liu T, Mou J, Wang R. A supplier evaluation model based on customer demand in blockchain tracing anti-counterfeiting platform project management. J Manage Sci Eng 2020;5(3):172–94. 链接1

[74] Sprock T, Sharp M, Bernstein WZ, Brundage MP, Helu M, Hedberg T. Integrated Operations management for distributed manufacturing. IFAC-PapersOnLine 2019;52(13):1820–4. 链接1

[75] Lu Y, Asghar MR. Semantic communications between distributed cyber– physical systems towards collaborative automation for smart manufacturing. J Manuf Syst 2020;55:348–59. 链接1

相关研究