期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第18卷 第11期 doi: 10.1016/j.eng.2021.04.030

通过官能团化处理提高碳纳米管对超高性能混凝土抗冲击性能的增强效果

a School of Civil Engineering, Dalian University of Technology, Dalian 116024 China
b School of Material Science and Engineering, Dalian University of Technology, Dalian 116024 China
c Department of Civil and Environmental Engineering, National University of Singapore, 117576 Singapore
d Department of Mechanical Engineering, New York Institute of Technology, New York, NY 11568, USA

收稿日期: 2020-10-13 修回日期: 2021-03-26 录用日期: 2021-04-06 发布日期: 2021-10-26

下一篇 上一篇

摘要

使用碳纳米管替代微米级纤维可增强超高性能混凝土(ultra-high performance concrete, UHPC)的抗冲击性能,但碳纳米管的弱润湿性和低分散性以及碳纳米管与UHPC之间的弱界面结合限制了其增强效果的充分发挥。因此,本文拟通过官能团化处理提高碳纳米管对UHPC抗冲击性能的增强效果。研究结果表明,通过碳纳米管的官能团化处理可使C‒S‒H 凝胶中的Si‒O‒Ca‒O‒Si 配位键发生断裂,进而在UHPC基体中形成以碳纳米管为中心的增强网络。此外,掺入官能团化碳纳米管(尤其羧基化碳纳米管)可显著降低骨料-基体界面宽度甚至消除界面,提高UHPC 结构整体性。另外,复合官能团化碳纳米管可降低UHPC的孔隙率及孔隙(尤其纳米级孔隙)尺寸,进而诱导UHPC内部C‒S‒H 凝胶收缩,从而增加凝胶内部水化产物的结构致密性。由于上述官能团化碳纳米管对UHPC微观结构的改善作用,复合材料在200~800 s−1应变率冲击压缩荷载作用下的动态抗压强度、动态峰值应变、冲击韧度和冲击耗散能显著提高。在所有复合材料中,羧基化碳纳米管(尤其是羧基化短碳纳米管)复合UHPC的抗冲击性能普遍优于普通及羟基化碳纳米管复合UHPC,甚至超过高掺量的钢纤维复合UHPC。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Forrestal MJ, Wright TW, Chen W. The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test. Int J Eng Sci 2007;34(3):405‒11. 链接1

[ 2 ] Richard P. A new ultra-high strength cementitious material. In: Proceedings of 4th International Symposium on Utilization of High Strength/High Performance Concrete. 1996 May 29‒31; Paris, France. Paris: Presses Ponts et Chaussees. p. 1343‒9.

[ 3 ] Doroud K, Moshaii A, Pezeshkian Y, Rahighi J, Afarideh H. Simulation of temperature dependence of RPC operation. Nucl Instrum Methods Phys Res Sect A 2009;602(3):723‒6. 链接1

[ 4 ] Lee M, Wang GYC, Chiu CA. Preliminary study of reactive powder concrete as a new repair material. Constr Build Mater 2007;21(1):182‒9. 链接1

[ 5 ] Dong YR, Xu ZD, Xu YS, Waseem S, Li QQ. Seismic performance and multi-scale model of damage evolution for reinforced concrete frame structures. ACI Struct 2021;118(2):3‒15. 链接1

[ 6 ] Ma HY, Tang SW, Li ZJ. New pore structure assessment methods for cement paste. J Mater Civ Eng 2015;27(2):A4014002. 链接1

[ 7 ] Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, et al. Recommendations for the characterization of porous solids. Pure Appl Chem 1994;66(8):1739‒58. 链接1

[ 8 ] Dong SF, Wang YY, Ashour A, Han BG, Ou JP. Uniaxial compressive fatigue behavior of ultra-high performance concrete reinforced with super-fine stainless wires. Int J Fatigue 2021;142:105959. 链接1

[ 9 ] Wang YH, Wang ZD, Liang XY, An MZ. Experimental and numerical studies on dynamic compressive behavior of reactive powder concretes. Guti Lixue Xuebao 2008;21(5):420‒30. 链接1

[10] Wang Z, Liu Y, Shen RF. Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression. Constr Build Mater 2008;22(5):811‒9. 链接1

[11] Wang Z, Shi Z, Wang J. On the strength and toughness properties of SFRC under static-dynamic compression. Compos B Eng 2011;42(5):1285‒90. 链接1

[12] Hou X, Cao S, Rong Q, Zheng W, Li G. Effects of steel fiber and strain rate on the dynamic compressive stress-strain relationship in reactive powder concrete. Constr Build Mater 2018;170:570‒81. 链接1

[13] Al-Masoodi AHH, Kawan A, Kasmuri M, Hamid R, Khan M. Static and dynamic properties of concrete with different types and shapes of fibrous reinforcement. Constr Build Mater 2016;104:247‒62. 链接1

[14] Tai YS. Uniaxial compression tests at various loading rates for reactive powder concrete. Theor Appl Fract Mech 2009;52(1):14‒21. 链接1

[15] Dong S, Han B, Yu X, Ou J. Dynamic impact behaviors and constitutive model of super-fine stainless wire reinforced reactive powder concrete. Constr Build Mater 2018;184:602‒16. 链接1

[16] Hu J, Stroeven P. Properties of the interfacial transition zone in model concrete. Interface Sci 2004;12(4):389‒97. 链接1

[17] Scrivener KL, Crumbie AK, Laugesen P. The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Sci 2004;12(4):411‒21. 链接1

[18] Buitelaar P. Ultra-high performance concrete: developments and applications during 25 years. In: Proceedings of the 1st International Symposium on Ultra-High Performance Concrete; 2004 Sep 13‒15; Kassel, Germany. 链接1

[19] Li VC, Leung CKY. Theory of steady state and multiple cracking of random discontinuous fiber reinforced brittle matrix composites. J Eng Mech 1992;118(11):2246‒64. 链接1

[20] Han B, Ding S, Wang J, Ou J. Nano-engineered cementitious composites: principles and practices. Singapore: Springer Singapore; 2019. 链接1

[21] Wang J, Dong S, Zhou C, Ashour A, Han B. Investigating pore structure of nano-engineered concrete with low-field nuclear magnetic resonance. J Mater Sci 2021;56(1):243‒59. 链接1

[22] Wang J, Dong S, Wang D, Yu X, Han B, Ou J. Enhanced impact properties of concrete modified with nanofiller inclusions. J Mater Civ Eng 2019;31(5):04019030. 链接1

[23] Wang XY, Dong SF, Li ZM, Han BG, Ou JP. Nanomechanical characteristics of interfacial transition zone in nano-engineered concrete. Engineering. . . 10.1016/j.eng.2020.08.025

[24] Wang J, Ding S, Han B, Ni Y, Ou J. Self-healing properties of reactive powder concrete with nanofillers. Smart Mater Struct 2018;27(11):115033. 链接1

[25] Yakobson BI, Brabec CJ, Bernholc J. Nanomechanics of carbon tubes:instabilities beyond linear response. Phys Rev Lett 1996;76(14):2511‒4. 链接1

[26] Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996;381(6584):678‒80. 链接1

[27] Wang XY, Zheng QF, Dong SF, Ashour A, Han BG. Interfacial characteristics of nano-engineered concrete composites. Constr Build Mater 2020;259. 链接1

[28] Montazeri A, Javadpour J, Khavandi A, Tcharkhtchi A, Mohajeri A. Mechanical properties of multi-walled carbon nanotube/epoxy composites. Mater Des 2010;31(9):4202‒8. 链接1

[29] Nochaiya T, Chaipanich A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials. Appl Surf Sci 2011;257(6):1941‒5. 链接1

[30] Han BG, Sun SW, Ding SQ, Zhang LQ, Yu X, Ou JP. Review of nanocarbon-engineered multifunctional cementitious composites. Compos Part A 2015;70:69‒81. 链接1

[31] Makar JM, Chan GW. Growth of cement hydration products on single walled multi-walled carbon nanotubes. J Am Ceram Soc 2009;92(6):1303‒10. 链接1

[32] Wang J, Dong S, Ashraf A, Wang X, Han B. Dynamic mechanical properties of cementitious composites with carbon nanotubes. Mater Today Commun 2020;22. 链接1

[33] Zou B, Chen SJ, Korayem AH, Collins F, Wang CM, Duan WH. Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon 2015;85:212‒20. 链接1

[34] Mallakpour S, Soltanian S. Surface functionalization of carbon nanotubes: fabrication and applications. RSC Adv 2016;6(111):109916‒35. 链接1

[35] Andrews R, Weisenberger MC. Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 2004;8(1):31‒7. 链接1

[36] Liu J, Zubiri MR, Vigolo B, Dossot M, Fort Y, Ehrhardt j. Efficient microwave-assisted radical functionalization of single-wall carbon nanotubes. Constr Build Mater 2006;45(4):885‒891. 链接1

[37] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev 2006;106(3):1105‒36. 链接1

[38] Li LX, Li F. The effect of carbonyl, carboxyl and hydroxyl groups on the capacitance of carbon nanotubes. N Carbon Mater 2011;26(3):224‒8. 链接1

[39] Oda H, Yamashita A, Minoura S, Okamoto M, Morimoto T. Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor. J Power Sources 2006;158(2):1510‒6. 链接1

[40] Cui X, Han B, Zheng Q, Yu X, Dong S, Zhang L, et al. Mechanical properties and reinforcing mechanisms of cementitious composites with different types of multiwalled carbon. Compos Part A 2017;103:131‒47. 链接1

[41] Cwirzen A, Habermehl-Cwirzen K, Penttala V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv Cement Res 2008;20(2):65‒73. 链接1

[42] Andrews R, Jacques D, Minot M, Rantell T. Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 2002;287(6):395‒403. 链接1

[43] Meng L, Fu C, Lu Q. Advanced technology for functionalization of carbon nanotubes. Prog Nat Sci 2009;19:801‒10. 链接1

[44] Fu Q, Xie Y, Long G, Niu D, Song H, Liu X. Impact characterization and modelling of cement and asphalt mortar based on SHPB experiments. Int J Impact Eng 2017;106:44‒52. 链接1

[45] Li QM, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int J Solids Struct 2003;40(2):343‒60. 链接1

[46] Miao Y, Li Y, Liu H, Deng Q, Shen L, Mai YW, et al. Determination of dynamic elastic modulus of polymeric materials using vertical split Hopkinson pressure bar. Int J Mech Sci 2016;108‒9:188‒96.

[47] Liu Z, Liu D, Cai Y, Yao Y, Pan Z, Zhou Y. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: a review. Int J Coal Geol 2020;218:103261. 链接1

[48] Muller ACA, Scrivener KL, Gajewicz AM, McDonald PJ. Densification of C‒S‒H measured by 1H NMR relaxometry. J Phys Chem C 2013;117(1):403‒12. 链接1

[49] Brownstein KR, Tarr CE. Spin-lattice relaxation in a system governed by diffusion. J Magn Reson 1977;26(1):17‒24. 链接1

[50] Li G, Gao B. Effect of level SiO2 and level CaCO3 on concrete performance. J Chin Rai Soc 2006;28(2):131‒6. Chinese.

[51] Konsta-Gdoutos MS, Metaxa ZS, Shah SP. Highly dispersed carbon nanotube reinforced cement based materials. Cement Concr Res 2010;40(7):1052‒9. 链接1

[52] Xiao J, Li L, Shen L, Poon C. Compressive behavior of recycled aggregate concrete under impact loading. Cement Concr Res 2015;71:46‒55. 链接1

[53] Lai J, Sun W. Dynamic behavior and visco-elastic damage model of ultra-high performance cementitious composite. Cement Concr Res 2009;39(11):1044‒51. 链接1

[54] Kaplan SA. Factors affecting the relationship between rate of loading and measured compressive strength of concrete. Mag Concr Res 1980;32(111):79‒88. 链接1

[55] Bischoff P, Perry S. Compressive behavior of concrete at high strain rates. Mater Struct 1991;24(6):425‒50. 链接1

[56] Manzur T, Yazdani N, Emon MAB. Effect of carbon nanotube size on compressive strengths of nanotube reinforced cementitious composites. J Mater 2014;2014(1):1‒8. 链接1

[57] Zhu J, Xu J, Bai E, Luo X, Gao Y. Effects of composite nanomaterials on dynamic mechanical properties of concrete. Acta Mater Compos Sin 2016;33(3):597‒605. Chinese.

[58] Wu X, Hu S, Chen D, Yu Z. Experimental study on impact compression of steel fiber high strength concrete. Explos Shock Waves 2005;25(2):125‒31. Chinese.

[59] Zhang XX, Yu RC, Ruiz G, Tarifa M, Camara MA. Effect of loading rate on crack velocities in HSC. Int J Impact Eng 2010;37(4):359‒70. 链接1

[60] Lu G, Yu TY. Energy absorption of structures and materials. New Delhi: Woodhead Publishing; 2003. 链接1

[61] Jiao C, Sun W. Impact resistance of reactive powder concrete. J Wuhan Univ Technol Mater Sci Ed 2015;30(4):752‒7. 链接1

[62] Liew KM, Kai MF, Zhang LW. Mechanical and damping properties of CNT-reinforced cementitious composites. Compos Struct 2017;160:81‒8. 链接1

[63] Arai S, Endo M. Carbon nanofiber-copper composites powder prepared by electrodeposition. Electrochem Commun 2003;5(9):797‒9. 链接1

[64] Constantinides G, Ulm FJ. The effect of two types of C‒S‒H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling. Cement Concr Res 2004;34(1):67‒80. 链接1

[65] Tong T, Fan Z, Liu Q, Wang S, Tan S, Yu Q. Investigation of the effects of graphene and graphene oxide nanoplatelets on the micro- and macro-properties of cementitious materials. Constr Build Mater 2016;106:102‒14. 链接1

[66] McDonald PJ, Rodin V, Valori A. Characterization of intra- and inter-C‒S‒H gel pore water in white cement based on an analysis of NMR signal amplitudes as a function of water content. Cement Concr Res 2010;40(12):1656‒63. 链接1

[67] Aligizaki KK. Pore structure of cement-based materials. London; New York: Routledge; 2005. 链接1

[68] Wang X, Dong S, Ashour A, Zhang W, Han B. Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars. Constr Build Mater 2020;240:117942. 链接1

[69] Lota JS, Pratt PL, Bensted J. Microstructural and micro-analytical studies of sulfate attack. II. sulfate-resisting Portland cement Ferrite composition and hydration chemistry. Cement Concr Res 1995;25(7):18114813. 链接1

[70] Plank J, Sachsenhauser B. Experimental determination of the effective anionic charge density of polycarboxylate superplasticizers in cement pore solution. Cement Concr Res 2009;39(1):1‒5. 链接1

[71] Dunn KJ, Bergman DJ, Latorraca GA. Nuclear magnetic resonance, petrophysical and logging application. Oxford: Pergamon Press Ltd; 2002. 链接1

[72] Bede A, Scurtu A, Ardelean I. NMR relaxation of molecules confined inside the cement paste pores under partially saturated conditions. Cement Concr Res 2016;89:56‒62. 链接1

[73] Plassais A, Pomiès MP, Lequeux N, Korb JP, Petit D, Barberon F, et al. Microstructure evolution of hydrated cement pastes. Phys Rev E Stat Nonlin Soft Matter Phys 2005;72(4):041401. 链接1

[74] Holly R, Reardon EJ, Hansson CM, Peemoeller H. Proton spin-spin relaxation study of the effect of temperature on white cement hydration. J Am Ceram Soc 2007;90(2):570‒7. 链接1

[75] Muller ACA, Scrivener KL, Gajewicz AM, McDonald PJ. Use of bench-top NMR to measure the density, composition and desorption isotherm of C—S—H in cement paste. Micropor Mesopor Mat 2013;178:99‒103. 链接1

[76] Mehta PK, Monteiro PJM. Concrete: microstructure, properties, and materials. London: Mc Graw-Hill; 2006.

[77] Maruyama I, Igarashi G, Nishioka Y. Bimodal behavior of C‒S‒H interpreted from short-term length change and water vapor sorption isotherms of hardened cement paste. Cement Concr Res 2015;73:158‒68. 链接1

[78] Jennings HM, Bullard JW, Thomas JJ, Andrade JE, Chen JJ, Scherer GW. Characterization and modeling of pores and surfaces in cement paste: correlations to processing and properties. J Adv Concr Technol 2008;6(1):5‒29. 链接1

[79] Han B, Zhang L, Zeng S, Dong S, Yu X, Yang R, et al. Nano-core effect in nano-engineered cementitious composites. Compos Part A 2017;95:100‒9. 链接1

[80] Wang J, Han B, Li Z, Yu X, Dong X. Effect investigation of nanofillers on CSH gel structure with Si NMR. J Mater Civ Eng 2019;31(1):04018352. 链接1

[81] Persson B. Consequence of cement constituents, mix composition and curing conditions for self-desiccation in concrete. Mater Struct 2000;33(6):352‒62. 链接1

[82] Dullien FAL. Porous media: fluid transport and pore structure. Cambridge: Academic Press; 1992. 链接1

[83] Wang L. Foundation of stress waves. Beijing: National Defense Industry Press; 2010. Chinese.

[84] Løland LE. Continuum damage model for load response estimation of concrete. Cement Concr Res 1980;10(3):395‒402. 链接1

[85] Hu S, Wang D. Dynamic constitutive relation of concrete materials under impact loading. Explos Shock Waves 2002;22(3):242‒6. Chinese.

相关研究