期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第8期 doi: 10.1016/j.eng.2021.06.008

基于深度学习技术的集群电动汽车及家庭热水系统灵活性预测

a State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Beijing 102206, China
b Division of Electric Power and Energy Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden
c Center for Electric Power and Energy Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark

收稿日期: 2020-10-08 修回日期: 2021-01-16 录用日期: 2021-03-29 发布日期: 2021-06-24

下一篇 上一篇

摘要

随着电网中间歇性可再生能源发电规模的增大,为了保证电能质量和频率的稳定性,电网对可控资源的需求也随之增加。需求响应(demand response, DR)资源的灵活性已成为解决这一问题的一个有价值的方法。然而,目前关于DR资源的灵活性预测问题尚未得到充分的研究。本研究应用一种深度学习技术,即结合时间卷积神经网络的Transformer模型(temporal convolution network-combined transformer)来预测电动汽车与家庭热水系统两种DR资源的聚合灵活性。所提出的灵活性预测方法使用了基于DR资源的历史用电数据以及为了辅助预测所提出的DR信号数据。所提方法不仅可以预测聚合灵活性的大小,还可以预测其维持时间。最后,本文通过算例仿真验证了灵活性预测结果的准确性。仿真结果表明,在不同的灵活性维持时间下,DR资源灵活性的大小会发生变化。文中所提出的DR资源灵活性预测方法展现了其在释放需求侧资源的灵活性以向电网提供备用容量方面的应用。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Hu J, Zhou H, Li Y, Hou P, Yang G. Multi-time scale energy management strategy of aggregator characterized by photovoltaic generation and electric vehicles. J Mod Power Syst Clean Energy 2020;8(4):727–36. 链接1

[ 2 ] Kumar A, Sekhar C. Demand response based congestion management in a mix of pool and bilateral electricity market model. Front Energy 2012;6(2):164–78. 链接1

[ 3 ] Hu J, Yang G, Ziras C, Kok K. Aggregator operation in the balancing market through network-constrained transactive energy. IEEE Trans Power Syst 2019;34(5):4071–80. 链接1

[ 4 ] Xue Y, Yu X. Beyond smart grid—cyber–physical–social system in energy future. Proc IEEE 2017;105(12):2290–2. 链接1

[ 5 ] International energy agency. Harnessing variable renewables: a guide to the balancing challenge. Paris: OECD Publishing; 2011. 链接1

[ 6 ] Chen Z, Sun Y, Ai X, Malik SM, Yang L. Integrated demand response characteristics of industrial park: a review. J Mod Power Syst Clean Energy 2020;8(1):15–26. 链接1

[ 7 ] Fattahi J, Samadi M, Erol-Kantarci M, Schriemer H. Transactive demand response operation at the grid edge using the IEEE 2030.5 standard. Engineering 2020;6(7):801–11. 链接1

[ 8 ] Li Z, Guo Q, Sun H, Wang J. Storage-like devices in load leveling: complementarity constraints and a new and exact relaxation method. Appl Energy 2015;151:13–22. 链接1

[ 9 ] Sanandaji BM, Vincent TL, Poolla K. Ramping rate flexibility of residential HVAC loads. IEEE Trans Sustain Energy 2016;7(2):865–74. 链接1

[10] Hu K, Li W, Wang L, Cao S, Zhu F, Shou Z. Energy management for multimicrogrid system based on model predictive control. Front Inf Technol Electron Eng 2018;19(11):1340–51. 链接1

[11] Vivekananthan C, Mishra Y, Ledwich G, Li F. Demand response for residential appliances via customer reward scheme. IEEE Trans Smart Grid 2014;5 (2):809–20. 链接1

[12] Wu J, Xue Y, Xie D, Yue D, Wen F, Zhao J. Evaluation and simulation analysis of reserve capability for electric vehicles. Autom Electr Power Syst 2018;42 (13):101–7. Chinese. 链接1

[13] Wang J, Jia Y, Mi Z, Chen H, Fang H. Reserve service strategy of electric vehicles based on double-incentive mechanism. Autom Electr Power Syst 2020;44 (10):68–76. Chinese. 链接1

[14] Yao W, Zhao J, Wen F, Xue Y, Chen F, Li L. Frequency regulation strategy for electric vehicles with centralized charging. Autom Electr Power Syst 2014;38 (9):69–76. Chinese. 链接1

[15] Zhang B, Xu G. Rolling horizon optimization for grid-connected electric vehicles considering demand difference. Autom Electr Power Syst 2020;44 (13):106–14. Chinese. 链接1

[16] Han B, Lu S, Xue F, Jiang L. Day-ahead electric vehicle aggregator bidding strategy using stochastic programming in an uncertain reserve market. IET Gener Transm Distrib 2019;13(12):2517–25. 链接1

[17] Wang Yi, Hug G, Liu Z, Zhang N. Modeling load forecast uncertainty using generative adversarial networks. Electr Power Syst Res 2020;189:106732. 链接1

[18] Chen K, Chen K, Wang Q, He Z, Hu J, He J. Short-term load forecasting with deep residual network. IEEE Trans Smart Grid 2019;10(4):3943–52. 链接1

[19] Hong T, Pinson P, Wang Yi, Weron R, Yang D, Zareipour H. Energy forecasting: a review and outlook. IEEE Open Access J Power and Energy 2020;7:376–88. 链接1

[20] Divshali PH, Evens C. Behaviour analysis of electrical vehicle flexibility based on large-scale charging data. In: 2019 IEEE Milan PowerTech; 2019 Jun 23–27; Milan, Italy; 2019.

[21] Sajjad IA, Chicco G, Napoli R. Definitions of demand flexibility for aggregate residential loads. IEEE Trans Smart Grid 2016;7(6):2633–43. 链接1

[22] Paridari K, Nordström L. Flexibility prediction, scheduling and control of aggregated TCLs. Electr Power Syst Res 2020;178:106004. 链接1

[23] Hochreiter S, Bengio Y, Frasconi P, Schmidhuber J. Gradient flow in recurrent nets: the diffificulty of learning long-term dependencies. In: John FK, Stefan CK, editors. A field guide to dynamical recurrent networks. New York: IEEE Press; 2001. p. 237–44. 链接1

[24] Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw 1994;5(2):157–66. 链接1

[25] Lu Z, Li H, Qiao Y. Power system flexibility planning and challenges considering high proportion of renewable energy. Autom Electr Power Syst 2016;40 (13):147–57. Chinese. 链接1

[26] Parlos AG, Rais OT, Atiya AF. Multi-step-ahead prediction using dynamic recurrent neural networks. Neural Netw 2000;13(7):765–86. 链接1

[27] Bao Y, Xiong T, Hu Z. Multi-step-ahead time series prediction using multipleoutput support vector regression. Neurocomputing 2014;129:482–93. 链接1

[28] Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. 2014. arXiv:1409.3215v3.

[29] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. 2017. arXiv:1706.03762v5.

[30] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997;9 (8):1735–80. 链接1

[31] Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. 2014. arXiv:1412.3555v1.

[32] Bai S, Kolter JZ, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. 2018. arXiv:1803.01271.

[33] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016 Jun 27–30; Las Vegas, NV, USA; 2016.

[34] Salimans T, Kingma DP. Weight normalization: a simple reparameterization to accelerate training of deep neural networks. 2016. arXiv:1602.07868. 链接1

[35] Kingma DP, Ba JL. Adam: a method for stochastic optimization. 2017. arXiv:1412.6980v9.

[36] Luo Z, Hu Z, Song Y, Xu Z, Lu H. Optimal coordination of plug-in electric vehicles in power grids with cost-benefit analysis—part II: a case study in china. IEEE Trans Power Syst 2013;28(4):3556–65. 链接1

[37] Sandels C, Widén J, Nordström L. Forecasting household consumer electricity load profiles with a combined physical and behavioral approach. Appl Energy 2014;131:267–78. 链接1

相关研究