期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第8期 doi: 10.1016/j.eng.2021.07.003

变环境压力下的激光选区熔化——介观尺度模型与输运现象

a State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
b Department of Welding Production, Metrology, and Technology of Materials, Perm National Research Polytechnic University, Perm 614990, Russia
c Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India

收稿日期: 2019-01-01 修回日期: 2019-06-11 录用日期: 2020-01-05 发布日期: 2021-07-15

下一篇 上一篇

摘要

近期研究表明,相比常压条件下,采用真空或低压环境的激光选区熔化(SLM)工艺可获得缺陷更少、表面质量更优的打印件。虽然通过高速摄像实验已经对SLM工艺在真空环境下的介观物理过程进行了部分研究,但该工艺下影响熔池传热和流动方面的深层机理仍不十分清楚。为此,基于最近的激光焊接模型工作,我们首次建立了变环境压力下SLM工艺的介观尺度数学模型。我们模拟了大气压和100 Pa低压环境下SLM工艺中316L粉末的输运现象。研究发现,在典型工艺参数(激光功率:200 W;扫描速度:2 ms-1;粉末直径:27 µm)下,大气环境中熔池表面凹坑的平均温度将近2800 K,而在100 Pa环境压力时,平均温度仅为2300 K。由于在100 Pa低压条件下,蒸发引起的表面压力和环境压力之间的压差相对于大气环境下的压差更大,更易驱动高温流体流动,因此熔池表面流动速度更加剧烈(平均速度约为4 m·s-1)。研究表明,熔池表面周期性的波浪流动(周期:14 µs)直接影响堆积体的表面粗糙度。此外,由于雷诺数小于400且远低于湍流临界值,熔融金属液流动模式为层流,因此,黏性耗散的影响至关重要。在真空或低环境压力条件下,波纹的流动轨迹更长,使得波动更容易由于黏性效应被耗散,从而改善了打印件的表面粗造度。总之,我们的数学模型阐明了变环境压力下SLM工艺实验研究中观察到的有趣输运现象的物理机制,它有望成为优化SLM工艺过程的有力工具。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Berman B. 3-D printing: the new industrial revolution. Bus Horiz 2012;55 (2):155–62. 链接1

[ 2 ] Lu B, Li D, Tian X. Development trends in additive manufacturing and 3D printing. Engineering 2015;1(1):085–9. 链接1

[ 3 ] Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 2016;61 (5):315–60. 链接1

[ 4 ] Gu DD, Meiners W, Wissenbach K, Poprawe R. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 2012;57(3):133–64. 链接1

[ 5 ] Wang HM. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components. Acta Aeronaut Astronaut Sin 2014;35(10):2690–8. Chinese.

[ 6 ] Zhang B, Liao H, Coddet C. Selective laser melting commercially pure Ti under vacuum. Vacuum 2013;95:25–9. Corrigendum in: Vacuum 2018;152:358.

[ 7 ] Sato Y, Tsukamoto M, Yamashita Y. Surface morphology of Ti–6Al–4V plate fabricated by vacuum selective laser melting. Appl Phys B 2015;119(3):545–9. 链接1

[ 8 ] Everton SK, Hirsch M, Stravroulakis P, Leach RK, Clare AT. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 2016;95:431–45. 链接1

[ 9 ] Zhao C, Fezzaa K, Cunningham RW, Wen H, De Carlo F, Chen L, et al. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci Rep 2017;7(1):3602. 链接1

[10] Li Z, Liu X, Wen S, He P, Zhong K, Wei Q, et al. In situ 3D monitoring of geometric signatures in the powder-bed-fusion additive manufacturing process via vision sensing methods. Sensors 2018;18(4):1180. 链接1

[11] Khairallah SA, Anderson A. Mesoscopic simulation model of selective laser melting of stainless steel powder. J Mater Process Technol 2014;214 (11):2627–36. 链接1

[12] Körner C, Attar E, Heinl P. Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 2011;211(6):978–87. 链接1

[13] Khairallah SA, Anderson AT, Rubenchik A, King WE. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 2016;108:36–45. 链接1

[14] Boley CD, Khairallah SA, Rubenchik AM. Calculation of laser absorption by metal powders in additive manufacturing. Appl Optics 2015;54(9): 2477–82. 链接1

[15] Lee YS, Zhang W. Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing. In: Proceedings of the 2015 International Solid Freeform Fabrication Symposium; 2015 Aug 10–12; Austin, TX, USA; 2015. p. 1154–65.

[16] Panwisawas C, Qiu C, Anderson MJ, Sovani Y, Turner RP, Attallah MM, et al. Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution. Comput Mater Sci 2017;126:479–90. 链接1

[17] Matthews MJ, Guss G, Khairallah SA, Rubenchik AM, Depond PJ, King WE. Denudation of metal powder layers in laser powder bed fusion processes. Acta Mater 2016;114:33–42. 链接1

[18] Amato KN, Gaytan SM, Murr LE, Martinez E, Shindo PW, Hernandez J, et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater 2012;60(5):2229–39. 链接1

[19] Gürtler FJ, Karg M, Leitz KH, Schmidt M. Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method. Phys Procedia 2013;41:881–6. 链接1

[20] Chen Z, Xiang Yu, Wei Z, Wei P, Lu B, Zhang L, et al. Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification. Appl Phys A 2018;124(4):313. 链接1

[21] Gu D, Yuan P. Thermal evolution behavior and fluid dynamics during laser additive manufacturing of Al-based nanocomposites: underlying role of reinforcement weight fraction. J Appl Phys 2015;118(23):233109. 链接1

[22] Pang S, Chen X, Zhou J, Shao X, Wang C. 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect. Opt Lasers Eng 2015;74:47–58. 链接1

[23] Hu R, Pang S, Chen X, Liang L, Shao X. An octree-based adaptive mesh refinement method for three-dimensional modeling of keyhole mode laser welding. Int J Heat Mass Transfer 2017;115(Pt A):258–63. 链接1

[24] Zhou J, Tsai HL, Lehnhoff TF. Investigation of transport phenomena and defect formation in pulsed laser keyhole welding of zinc-coated steels. J Phys D 2006;39(24):5338–55. 链接1

[25] Pang S, Chen W, Zhou J, Liao D. Self-consistent modeling of keyhole and weld pool dynamics in tandem dual beam laser welding of aluminum alloy. J Mater Process Technol 2015;217:131–43. 链接1

[26] Scardovelli R, Zaleski S. Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech 1999;31(1):567–603. 链接1

[27] Lin R, Wang H, Lu F, Solomon J, Carlson B. Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys. Int J Heat Mass Transfer 2017;108(Pt A):244–56. 链接1

[28] Hu R, Chen X, Yang G, Gong S, Pang S. Metal transfer in wire feeding-based electron beam 3D printing: modes, dynamics, and transition criterion. Int J Heat Mass Transfer 2018;126(Pt B):877–87. 链接1

[29] Pang S, Hirano K, Fabbro R, Jiang T. Explanation of penetration depth variation during laser welding under variable ambient pressure. J Laser Appl 2015;27 (2):022007. 链接1

[30] Fabbro R, Hirano K, Pang S. Analysis of the physical processes occurring during deep penetration laser welding under reduced pressure. J Laser Appl 2016;28 (2):022427. 链接1

[31] Semak V, Matsunawa A. The role of recoil pressure in energy balance during laser materials processing. J Phys D 1997;30(18):2541–52. 链接1

相关研究