期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第8期 doi: 10.1016/j.eng.2021.07.004

木质素磺酸盐/二氧化硅无机颗粒体系中的原子力显微镜力学测试——从分散机理研究到产品设计

a School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
b State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China

收稿日期: 2019-04-11 修回日期: 2019-06-21 录用日期: 2020-06-30 发布日期: 2021-07-19

下一篇 上一篇

摘要

设计和制备高性能木质素基分散剂是实现木质素工程化高值利用的关键。这一过程很大程度上取决于对木质素基分散剂分散机理的理解。本文通过原子力显微镜(AFM)量化研究了木质素磺酸盐/二氧化硅(LS/SiO2)体系在不同pH条件下的分散机理。结果表明,SiO2颗粒之间在LS溶液中比在水中有更强的排斥力,因此具有更好的分散稳定性。分别使用Derjaguin-Landau-Verwey-Overbeek (DLVO)理论以及结合空间位阻排斥力的DLVO理论方程对水中和LS溶液中的SiO2探针与基材之间的AFM力/距离曲线(F/D)进行拟合。基于拟合结果,分别计算出静电排斥力和空间位阻排斥力,证明LS在SiO2粒子之间提供了较强的空间位阻排斥力。进一步研究证明,LS在SiO2上的吸附量(Q)、归一化作用常数(A)和特征长度(L)是影响LS/SiO2体系空间位阻排斥力的三个关键因素。基于上述研究,设计并制备了新型季铵化接枝磺化木质素基分散剂(QAGSL)。QAGSL对SiO2和真实水泥颗粒均具有良好的分散性能。相关研究既为LS/无机颗粒体系中的分散机理提供了基础和定量的理解,也为高性能木质素基分散剂的开发提供了重要的技术指导。

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM. The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 2010;110(6):3552–99. 链接1

[ 2 ] Bernier E, Lavigne C, Robidoux PY. Life cycle assessment of kraft lignin for polymer applications. Int J Life Cycle Assess 2013;18(2):520–8. 链接1

[ 3 ] Zhang J, Chen Y, Sewell P, Brook MA. Utilization of softwood lignin as both crosslinker and reinforcing agent in silicone elastomers. Green Chem 2015;17 (3):1811–9. Correction in: Green Chem 2015,17(5):3176.

[ 4 ] Li Y, Zhu H, Yang C, Zhang Y, Xu J, Lu M. Synthesis and super retarding performance in cement production of diethanolamine modified lignin surfactant. Constr Build Mater 2014;52:116–21. 链接1

[ 5 ] Qiu X, Zeng W, Yu W, Xue Y, Pang Y, Li X, et al. Alkyl chain cross-linked sulfobutylated lignosulfonate: a highly efficient dispersant for carbendazim suspension concentrate. ACS Sustain Chem Eng 2015;3(7):1551–7. 链接1

[ 6 ] Xiong W, Yang D, Zhong R, Li Y, Zhou H, Qiu X. Preparation of lignin-based silica composite submicron particles from alkali lignin and sodium silicate in aqueous solution using a direct precipitation method. Ind Crops Prod 2015;74:285–92. 链接1

[ 7 ] Yu G, Li B, Wang H, Liu C, Mu X. Preparation of concrete superplasticizer by oxidation–sulfomethylation of sodium lignosulfonate. BioResources 2013;8 (1):1055–63. 链接1

[ 8 ] Houst YF, Bowen P, Perche F, Kauppi A, Borget P, Galmiche L, et al. Design and function of novel superplasticizers for more durable high performance concrete (superplast project). Cement Concr Res 2008;38(10):1197–209. 链接1

[ 9 ] Björnström J, Chandra S. Effect of superplasticizers on the rheological properties of cements. Mater Struct 2003;36(10):685–92. 链接1

[10] Plank J, Sakai E, Miao CW, Yu C, Hong JX. Chemical admixtures—chemistry, applications and their impact on concrete microstructure and durability. Cement Concr Res 2015;78:81–99. 链接1

[11] Klapiszewski Ł, Nowacka M, Siwin´ ska-Stefan´ ska K, Jesionowski T. Lignosulfonate and silica as precursors of advanced composites. Pol J Chem Technol 2013;15(3):103–9. 链接1

[12] Milczarek G, Motylenko M, Modrzejewska-Sikorska A, Klapiszewski Ł, Wysokowski M, Bazhenov VV, et al. Deposition of silver nanoparticles on organically-modified silica in the presence of lignosulfonate. RSC Adv 2014;4 (94):52476–84. 链接1

[13] Klapiszewski Ł, Zdarta J, Szatkowski T, Wysokowski M, Nowacka M, SzwarcRzepka K, et al. Silica/lignosulfonate hybrid materials: preparation and characterization. Open Chem 2014;12(6):719–35.

[14] Konował E, Modrzejewska-Sikorska A, Motylenko M, Klapiszewski Ł, Wysokowski M, Bazhenov VV, et al. Functionalization of organically modified silica with gold nanoparticles in the presence of lignosulfonate. Int J Biol Macromol 2016;85:74–81. 链接1

[15] Modrzejewska-Sikorska A, Konował E, Klapiszewski Ł, Nowaczyk G, Jurga S, Jesionowski T, et al. Lignosulfonate-stabilized selenium nanoparticles and their deposition on spherical silica. Int J Biol Macromol 2017;103:403–8. 链接1

[16] Li R, Yang DJ, Guo WY, Qiu XQ. The adsorption and dispersing mechanisms of sodium lignosulfonate on Al2O3 particles in aqueous solution. Holzforschung 2013;67(4):387–94. 链接1

[17] Megiatto JD, Cerrutti BM, Frollini E. Sodium lignosulfonate as a renewable stabilizing agent for aqueous alumina suspensions. Int J Biol Macromol 2016;82:927–32. 链接1

[18] Colombo A, Geiker MR, Justnes H, Lauten RA, De Weerdt K. On the effect of calcium lignosulfonate on the rheology and setting time of cement paste. Cement Concr Res 2017;100:435–44. 链接1

[19] Wang CC, Sivashanmugan K, Chen CK, Hong JR, Sung WI, Liao JD, et al. Specific unbinding forces between mutated human P-selectin glycoprotein ligand-1 and viral protein-1 measured using force spectroscopy. J Phys Chem Lett 2017;8(21):5290–5. 链接1

[20] Shi C, Chan DYC, Liu Q, Zeng H. Probing the hydrophobic interaction between air bubbles and partially hydrophobic surfaces using atomic force microscopy. J Phys Chem C 2014;118(43):25000–8. 链接1

[21] Hutter JL, Bechhoefer J. Calibration of atomic-force microscope tips. Rev Sci Instrum 1993;64(7):1868–73. 链接1

[22] Geng Y, Yan Y, Wang J, Brousseau E, Sun Y, Sun Y. Fabrication of periodic nanostructures using AFM tip-based nanomachining: combining groove and material pile-up topographies. Engineering 2018;4(6):787–95. 链接1

[23] Dufrêne YF, Martínez-Martín D, Medalsy I, Alsteens D, Müller DJ. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat Methods 2013;10(9):847–54. 链接1

[24] Li X, Feng Y, Chu G, Ning N, Tian M, Zhang L. Directly and quantitatively studying the interfacial interaction between SiO2 and elastomer by using peak force AFM. Compos Commun 2018;7:36–41. 链接1

[25] Ding YH, Zhang P, Ren HM, Zhuo Q, Yang ZM, Jiang X, et al. Surface adhesion properties of graphene and graphene oxide studied by colloid-probe atomic force microscopy. Appl Surf Sci 2011;258(3):1077–81. 链接1

[26] Yoo HY, Huang J, Li L, Foo M, Zeng H, Hwang DS. Nanomechanical contribution of collagen and von Willebrand factor A in marine underwater adhesion and its implication for collagen manipulation. Biomacromolecules 2016;17 (3):946–53. 链接1

[27] Binazadeh M, Faghihnejad A, Unsworth LD, Zeng H. Understanding the effect of secondary structure on molecular interactions of poly-L-lysine with different substrates by SFA. Biomacromolecules 2013;14(10):3498–508. 链接1

[28] Zeng H, Hwang DS, Israelachvili JN, Waite JH. Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water. Proc Natl Acad Sci USA 2010;107(29):12850–3. 链接1

[29] Yang B, Ayyadurai N, Yun H, Choi YS, Hwang BH, Huang J, et al. In vivo residuespecific dopa-incorporated engineered mussel bioglue with enhanced adhesion and water resistance. Angew Chem Int Ed Engl 2014;126 (49):13578–82. 链接1

[30] Qin C, Clarke K, Li K. Interactive forces between lignin and cellulase as determined by atomic force microscopy. Biotechnol Biofuels 2014;7(1):65. 链接1

[31] Cai C, Pang Y, Zhan X, Zeng M, Lou H, Qian Y, et al. Using temperatureresponsive zwitterionic surfactant to enhance the enzymatic hydrolysis of lignocelluloses and recover cellulase by cooling. Bioresour Technol 2017;243:1141–8. 链接1

[32] Israelachvili JN. Intermolecular and surface forces. 3rd ed. California: Academic Press; 2011. 链接1

[33] Lou H, Lai H, Wang M, Pang Y, Yang D, Qiu X, et al. Preparation of lignin-based superplasticizer by graft sulfonation and investigation of the dispersive performance and mechanism in a cementitious system. Ind Eng Chem Res 2013;52(46):16101–9. 链接1

[34] Kuhl TL, Leckband DE, Lasic DD, Israelachvili JN. Modulation of interaction forces between bilayers exposing short-chained ethylene oxide headgroups. Biophys J 1994;66(5):1479–88. 链接1

[35] Uchikawa H, Hanehara S, Sawaki D. The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture. Cement Concr Res 1997;27(1):37–50. 链接1

[36] Yoshioka K, Sakai E, Daimon M, Kitahara A. Role of steric hindrance in the performance of superplasticizers for concrete. J Am Ceram Soc 1997;80 (10):2667–71. 链接1

[37] Anderson JH, Parks GA. Electrical conductivity of silica gel in the presence of adsorbed water. J Phys Chem 1968;72(10):3662–8. 链接1

[38] Wu SH, Mou CY, Lin HP. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 2013;42(9):3862–75. 链接1

[39] Qiu X, Kong Q, Zhou M, Yang D. Aggregation behavior of sodium lignosulfonate in water solution. J Phys Chem B 2010;114(48):15857–61. 链接1

相关研究