期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第8卷 第1期 doi: 10.1016/j.eng.2021.08.001

一种采用三流体喷嘴喷雾干燥技术高效构筑齿科修复用多功能团簇体填料的通用策略

a State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
b Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
c State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
d Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China

收稿日期: 2021-01-12 修回日期: 2021-02-28 录用日期: 2021-03-19 发布日期: 2021-08-20

下一篇 上一篇

摘要

齿科复合树脂对多功能填料有很高的要求。本研究首次采用配备三流体喷嘴的喷雾干燥设备构筑由不同功能纳米颗粒组成的高性能复合纳米颗粒团簇体,并将其作为填料应用于齿科修复。三流体喷嘴的应用可以有效避免喷雾干燥前需将带有相反电荷的纳米粒子混合而发生的团聚现象,从而构筑形貌规则的复合纳米颗粒团簇体填料。对于SiO2-ZrO2二元体系,尽管引入了ZrO2纳米颗粒,采用三流体喷嘴构筑的SiO2-ZrO2复合团簇体可以使复合树脂保持优异的力学性能[弯曲强度、弯曲模量、压缩强度和硬度分别为(133.3 ± 4.7) MPa、(8.8 ± 0.5) GPa、(371.1 ± 13.3) MPa和(64.5 ± 0.7) HV],但使用二流体喷嘴构筑的SiO2-ZrO2复合团簇体填充所得复合树脂的力学性能显著下降。此外,对SiO2-ZrO2复合团簇体填料进行热处理后再进行填充,能够显著提高复合树脂的力学性能和X射线阻射性。含有10 wt.%以上ZrO2纳米颗粒的复合树脂可以满足其对X射线阻射性的要求。更重要的是,该方法可以推广到三元或四元体系。填充了SiO2-ZrO2-ZnO 复合团簇体填料(三者质量比为56∶10∶4)的复合树脂,除了具有良好的力学性能和X射线阻射性外,还展现出高的抗菌活性(抗菌率> 99%)。因此,采用三流体喷嘴的喷雾干燥技术在高效构筑多功能团簇体填料方面具有巨大的潜力。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

参考文献

[ 1 ] Li P, Zhang X, Hou C, Chen Y, He T. Highly efficient visible-light driven solarfuel production over tetra(4-carboxyphenyl) porphyrin iron(III) chloride using CdS/Bi2S3 heterostructure as photosensitizer. Appl Catal B 2018;238:656–63. 链接1

[ 2 ] Wang Z, Zhao Z, Baucom J, Wang D, Dai L, Chen JF. Nitrogen-doped graphene foam as a metal-free catalyst for reduction reactions under a high gravity field. Engineering 2020;6(6):680–7. 链接1

[ 3 ] Liu L, Han J, Xu L, Zhou J, Zhao C, Ding S, et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020;368(6493):850–6. 链接1

[ 4 ] Schrauben JN, Hayoun R, Valdez CN, Braten M, Fridley L, Mayer JM. Titanium and zinc oxide nanoparticles are proton-coupled electron transfer agents. Science 2012;336(6086):1298–301. 链接1

[ 5 ] Draz MS, Vasan A, Muthupandian A, Kanakasabapathy MK, Thirumalaraju P, Sreeram A, et al. Virus detection using nanoparticles and deep neural networkenabled smartphone system. Sci Adv 2020;6(51):eabd5354. 链接1

[ 6 ] Wang D, Wang Z, Zhan Q, Pu Y, Wang JX, Foster NR, et al. Facile and scalable preparation of fluorescent carbon dots for multifunctional applications. Engineering 2017;3(3):402–8. 链接1

[ 7 ] Casamonti M, Risaliti L, Vanti G, Piazzini V, Bergonzi MC, Bilia AR. Andrographolide loaded in micro- and nano-formulations: improved bioavailability, target-tissue distribution, and efficacy of the ‘‘king of bitters.” Engineering 2019;5(1):69–75. 链接1

[ 8 ] McGillicuddy E, Morrison L, Cormican M, Dockery P, Morris D. Activated charcoal as a capture material for silver nanoparticles in environmental water samples. Sci Total Environ 2018;645:356–62. 链接1

[ 9 ] Chun K, Choi H, Lee J. Comparison of mechanical property and role between enamel and dentin in the human teeth. J Dent Biomech 2014;5: 1758736014520809. 链接1

[10] Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet 2007;369(9555):51–9. 链接1

[11] Aydin Sevinç B, Hanley L. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res B Appl Biomater 2010;94(1):22–31. 链接1

[12] Sideridou I, Tserki V, Papanastasiou G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 2002;23(8):1819–29. 链接1

[13] Cramer NB, Stansbury JW, Bowman CN. Recent advances and developments in composite dental restorative materials. J Dent Res 2011;90(4):402–16. 链接1

[14] Par M, Spanovic N, Bjelovucic R, Skenderovic H, Gamulin O, Tarle Z. Curing potential of experimental resin composites with systematically varying amount of bioactive glass: degree of conversion, light transmittance and depth of cure. J Dent 2018;75:113–20. 链接1

[15] Besinis A, van Noort R, Martin N. Remineralization potential of fully demineralized dentin infiltrated with silica and hydroxyapatite nanoparticles. Dent Mater 2014;30(3):249–62. 链接1

[16] Makvandi P, Ghaemy M, Ghadiri AA, Mohseni M. Photocurable, antimicrobial quaternary ammonium-modified nanosilica. J Dent Res 2015;94(10):1401–7. 链接1

[17] Curtis AR, Shortall AC, Marquis PM, Palin WM. Water uptake and strength characteristics of a nanofilled resin-based composite. J Dent 2008;36 (3):186–93. 链接1

[18] Leprince J, Palin WM, Mullier T, Devaux J, Vreven J, Leloup G. Investigating filler morphology and mechanical properties of new low-shrinkage resin composite types. J Oral Rehabil 2010;37(5):364–76. 链接1

[19] Niu H, Yang DL, Sun Q, Pu Y, Gao T, Wang JX. A new method for predicting the maximum filler loading of dental resin composites based on DEM simulations and experiments. Dent Mater 2020;36(12):e375–85. 链接1

[20] Qian L, Wang R, Li W, Chen H, Jiang X, Zhu M. The synthesis of urchin-like serried hydroxyapatite (USHA) and its reinforcing effect for dental resin composites. Macromol Mater Eng 2019;304(5):1800738 链接1

[21] Chadda H, Satapathy BK, Patnaik A, Ray AR. Mechanistic interpretations of fracture toughness and correlations to wear behavior of hydroxyapatite and silica/hydroxyapatite filled bis-GMA/TEGDMA micro/hybrid dental restorative composites. Compos Part B Eng 2017;130:132–46. 链接1

[22] Tammaro L, Di Salle A, Calarco A, De Luca I, Riccitiello F, Peluso G, et al. Multifunctional bioactive resin for dental restorative materials. Polymers 2020;12(2):332. 链接1

[23] Weir MD, Moreau JL, Levine ED, Strassler HE, Chow LC, Xu HHK. Nanocomposite containing CaF2 nanoparticles: thermal cycling, wear and long-term water-aging. Dent Mater 2012;28(6):642–52. 链接1

[24] Pandit S, Kim GR, Lee MH, Jeon JG. Evaluation of Streptococcus mutans biofilms formed on fluoride releasing and non fluoride releasing resin composites. J Dent 2011;39(11):780–7. 链接1

[25] Yoshida K, Tanagawa M, Atsuta M. Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials. J Biomed Mater Res 1999;47(4):516–22. 链接1

[26] Tavassoli Hojati S, Alaghemand H, Hamze F, Ahmadian Babaki F, Rajab-Nia R, Rezvani MB, et al. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent Mater 2013;29(5):495–505. 链接1

[27] Taira M, Toyooka H, Miyawaki H, Yamaki M. Studies on the radiopacity of experimental dental composite resins containing admixed SiO2–ZrO2 fillers. J Mater Sci Mater M 1995;6(1):5–7. 链接1

[28] Bowen RL, Cleek GW. A new series of X-ray-opaque reinforcing fillers for composite materials. J Dent Res 1972;51(1):177–82. 链接1

[29] Chiari MDS, Rodrigues MC, Xavier TA, de Souza EMN, Arana-Chavez VE, Braga RR. Mechanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles. Dent Mater 2015;31(6):726–33. 链接1

[30] Xu HH, Moreau JL, Sun L, Chow LC. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater 2011;27 (8):762–9. 链接1

[31] Samuel SP, Li S, Mukherjee I, Guo Y, Patel AC, Baran G, et al. Mechanical properties of experimental dental composites containing a combination of mesoporous and nonporous spherical silica as fillers. Dent Mater 2009;25 (3):296–301. 链接1

[32] Wang X, Cai Q, Zhang X, Wei Y, Xu M, Yang X, et al. Improved performance of Bis-GMA/TEGDMA dental composites by net-like structures formed from SiO2 nanofiber fillers. Mater Sci Eng C 2016;59:464–70. 链接1

[33] Wang R, Zhang M, Liu F, Bao S, Wu T, Jiang X, et al. Investigation on the physical–mechanical properties of dental resin composites reinforced with novel bimodal silica nanostructures. Mater Sci Eng C 2015;50:266–73. 链接1

[34] Atai M, Pahlavan A, Moin N. Nano-porous thermally sintered nano silica as novel fillers for dental composites. Dent Mater 2012;28(2):133–45. 链接1

[35] Rodríguez HA, Giraldo LF, Casanova H. Formation of functionalized nanoclusters by solvent evaporation and their effect on the physicochemical properties of dental composite resins. Dent Mater 2015;31(7):789–98. 链接1

[36] Waldron K, Wu WD, Wu Z, Liu W, Selomulya C, Zhao D, et al. Formation of monodisperse mesoporous silica microparticles via spray-drying. J Colloid Interface Sci 2014;418:225–33. 链接1

[37] Dantas D, Pasquali MA, Cavalcanti-Mata M, Duarte ME, Lisboa HM. Influence of spray drying conditions on the properties of avocado powder drink. Food Chem 2018;266:284–91. 链接1

[38] Glavas L, Odelius K, Albertsson AC. Simultaneous polymerization and polypeptide particle production via reactive spray-drying. Biomacromolecules 2016;17(9):2930–6. 链接1

[39] Balgis R, Ernawati L, Ogi T, Okuyama K, Gradon L. Controlled surface topography of nanostructured particles prepared by spray-drying process. AIChE J 2017;63(5):1503–11. 链接1

[40] Iskandar F, Gradon L, Okuyama K. Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. J Colloid Interface Sci 2003;265(2):296–303. 链接1

[41] Yang DL, Sun Q, Duan YH, Niu H, Wang RL, Wang D, et al. Efficient construction of SiO2 colloidal nanoparticle clusters as novel fillers by a spray-drying process for dental composites. Ind Eng Chem Res 2019;58(39):18178–86. 链接1

[42] Zhao SN, Yang DL, Wang D, Pu Y, Le Y, Wang JX, et al. Design and efficient fabrication of micro-sized clusters of hydroxyapatite nanorods for dental resin composites. J Mater Sci 2019;54(5):3878–92. 链接1

[43] Yang DL, Cui YN, Sun Q, Liu M, Niu H, Wang JX. Antibacterial activity and reinforcing effect of SiO2–ZnO complex cluster fillers for dental resin composites. Biomater Sci 2021;9(5):1795–804. 链接1

[44] Kašpar O, Jakubec M, Šteˇpánek F. Characterization of spray dried chitosan-TPP microparticles formed by two- and three-fluid nozzles. Powder Technol 2013;240(5):31–40. 链接1

[45] Wang C, Hickey AJ. Isoxyl aerosols for tuberculosis treatment: preparation and characterization of particles. AAPS PharmSciTech 2010;11(2):538–49. 链接1

[46] Maria Leena M, Gover Antoniraj M, Moses JA, Anandharamakrishnan C. Three fluid nozzle spray drying for co-encapsulation and controlled release of curcumin and resveratrol. J Drug Deliv Sci Technol 2020;57:101678. 链接1

[47] Shi X, Lee Y. Encapsulation of tributyrin with whey protein isolate (WPI) by spray-drying with a three-fluid nozzle. J Food Eng 2020;281(Suppl 2):109992. 链接1

[48] Kondo K, Niwa T, Danjo K. Preparation of sustained-release coated particles by novel microencapsulation method using three-fluid nozzle spray drying technique. Eur J Pharm Sci 2014;51:11–9. 链接1

[49] Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 1968;26(1):62–9. 链接1

[50] Xia Y, Zhang C, Wang JX, Wang D, Zeng XF, Chen JF. Synthesis of transparent aqueous ZrO2 nanodispersion with a controllable crystalline phase without modification for a high-refractive-index nanocomposite film. Langmuir 2018;34(23):6806–13. 链接1

[51] Yang DL, Sun Q, Niu H, Wang RL, Wang D, Wang JX. The properties of dental resin composites reinforced with silica colloidal nanoparticle clusters: effects of heat treatment and filler composition. Compos Part B Eng 2020;186:107791. 链接1

[52] Nagashima S, Yoshida A, Ansai T, Watari H, Notomi T, Maki K, et al. Rapid detection of the cariogenic pathogens Streptococcus mutans and Streptococcus sobrinus using loop-mediated isothermal amplification. Oral Microbiol Immunol 2007;22(6):361–8. 链接1

[53] Bürgers R, Eidt A, Frankenberger R, Rosentritt M, Schweikl H, Handel G, et al. The anti-adherence activity and bactericidal effect of microparticulate silver additives in composite resin materials. Arch Oral Biol 2009;54 (6):595–601. 链接1

[54] Burke FJT, Crisp RJ, Bell TJ, Healy A, Mark B, McBirnie R, et al. One-year retrospective clinical evaluation of hybrid composite restorations placed in United Kingdom general practices. Quintessence Int 2001;32 (4):293–8. 链接1

[55] Zalkind MM, Keisar O, Ever-Hadani P, Grinberg R, Sela MN. Accumulation of Streptococcus mutans on light-cured composites and amalgam: an in vitro study. J Esthet Dent 1998;10(4):187–90. 链接1

相关研究