期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第12期 doi: 10.1016/j.eng.2021.09.011

基于脑电图的脑-机接口系统在实用化进程中面临的挑战

a Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
b Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
c Swartz Center for Computational Neuroscience, University of California, San Diego, CA 92093, USA
d Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China

收稿日期: 2021-03-18 修回日期: 2021-05-19 录用日期: 2021-06-11 发布日期: 2021-08-27

下一篇 上一篇

参考文献

[ 1 ] Vidal JJ. Toward direct brain–computer communication. Annu Rev Biophys Bioeng 1973;2(1):157–80. 链接1

[ 2 ] Wolpaw JR, Millán JDR, Ramsey NF. Brain–computer interfaces: definitions and principles. Handb Clin Neurol 2020;168:15–23. 链接1

[ 3 ] Panicker RC, Puthusserypady S, Sun Y. An asynchronous P300 BCI with SSVEPbased control state detection. IEEE Trans Biomed Eng 2011;58(6):1781–8. 链接1

[ 4 ] Chen X, Wang Y, Nakanishi M, Gao X, Jung TP, Gao S. High-speed spelling with a noninvasive brain–computer interface. Proc Natl Acad Sci USA 2015;112(44): E6058–67. 链接1

[ 5 ] Jiang J, Yin E, Wang C, Xu M, Ming D. Incorporation of dynamic stopping strategy into the high-speed SSVEP-based BCIs. J Neural Eng 2018;15 (4):046025. 链接1

[ 6 ] Xu M, Han J, Wang Y, Jung TP, Ming D. Implementing over 100 command codes for a high-speed hybrid brain–computer interface using concurrent P300 and SSVEP features. IEEE Trans Biomed Eng 2020;67(11):3073–82. 链接1

[ 7 ] Xu M, Xiao X, Wang Y, Qi H, Jung TP, Ming D. A brain–computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli. IEEE Trans Biomed Eng 2018;65(5):1166–75. 链接1

[ 8 ] Siddharth, Patel AN, Jung TP, Sejnowski TJ. A wearable multi-modal biosensing system towards real-world applications. IEEE Trans Biomed Eng 2019;66(4):1137–47. 链接1

[ 9 ] Wang K, Xu M, Wang Y, Zhang S, Chen L, Ming D. Enhance decoding of premovement EEG patterns for brain–computer interfaces. J Neural Eng 2020;17 (1):016033. 链接1

[10] Xiao X, Xu M, Jin J, Wang Y, Jung TP, Ming D. Discriminative canonical pattern matching for single-trial classification of ERP components. IEEE Trans Biomed Eng 2020;67(8):2266–75. 链接1

[11] Xu M, Qi H, Wan B, Yin T, Liu Z, Ming D. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature. J Neural Eng 2013;10(2):026001. 链接1

[12] The group on Neurotechnologies for Brain–Machine Interfacing. Standards roadmap: neurotechnologies for brain–machine interfacing. Report. New York: IEEE; 2020 Feb. Report No.: IC17-007.

[13] Mei J, Xu M, Wang L, Ke Y, Wang Y, Jung TP, et al. Using SSVEP-BCI to continuous control a Quadcopter with 4-DOF motions. In: Proceedings of 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); Jun 20–24; Montreal, QC, Canada. New York: IEEE; 2020. 链接1

[14] Xu L, Xu M, Ke Y, An X, Liu S, Ming D. Cross-dataset variability problem in EEG decoding with deep learning. Front Hum Neurosci 2020;14:103. 链接1

[15] Chiang KJ, Wei CS, Nakanishi M, Jung TP. Cross-subject transfer learning improves the practicality of real-world applications of brain–computer interfaces. In: Proceedings of 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); 2019 Mar 20–23; San Francisco, CA, USA. New York: IEEE; 2019.

[16] Wei CS, Lin YP, Wang YT, Lin CT, Jung TP. A subject-transfer framework for obviating inter- and intra-subject variability in EEG-based drowsiness detection. NeuroImage 2018;174:407–19. 链接1

相关研究