期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第22卷 第3期 doi: 10.1016/j.eng.2021.11.019

超高性能混凝土中钢纤维-基体界面粘结的研究

a Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China

b Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

收稿日期: 2021-02-20 修回日期: 2021-08-31 录用日期: 2021-11-15 发布日期: 2022-01-25

下一篇 上一篇

摘要

超高性能混凝土(UHPC)是一种相对较新的水泥混凝土复合材料,由于其优异的机械强度和耐久性,在基础设施建设中具有巨大的应用潜力。钢纤维与基体的界面粘结性能是决定UHPC其他力学性能的主要因素,包括抗拉、弯曲、抗压强度和破坏模式(断裂行为)。本文通过讨论并比较多种纤维拉拔测试方法和分析模型,全面综述了UHPC的纤维-基体粘结行为的研究进展;详细确定并讨论了影响纤维-基体粘结的参数,包括纤维的几何形状和方向、表面处理、基体的组成和强度。最后,基于现有研究,对未来UHPC增强方法和测试细节提出了建议。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

图18

参考文献

[ 1 ] Wu Z, Shi C, He W, Wu L. Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Constr Build Mater 2016;103:8‒14. 链接1

[ 2 ] Bajaber MA, Hakeem IY. UHPC evolution, development, and utilization in construction: a review. J Mater Res Technol 2021;10:1058‒74. 链接1

[ 3 ] Ren L, Fang Z, Wang K. Design and behavior of super-long span cable-stayed bridge with CFRP cables and UHPC members. Compos Part B 2019;164:72‒81. 链接1

[ 4 ] Cao YYY, Yu QL, Brouwers HJH, Chen W. Predicting the rate effects on hooked-end fiber pullout performance from ultra-high performance concrete (UHPC). Cement Concr Res 2019;120:164‒75. 链接1

[ 5 ] Wu Z, Shi C, Khayat KH. Investigation of mechanical properties and shrinkage of ultra-high performance concrete: influence of steel fiber content and shape. Compos Part B 2019;174:107021. 链接1

[ 6 ] Hung CC, Lee HS, Chan SN. Tension-stiffening effect in steel-reinforced UHPC composites: constitutive model and effects of steel fibers, loading patterns, and rebar sizes. Compos Part B 2019;158:269‒78. 链接1

[ 7 ] Naaman AE, Najm H. Bond-slip mechanisms of steel fibers in concrete. ACI Mater J 1991;88(2):135‒45. 链接1

[ 8 ] Gesoglu M, Güneyisi E, Muhyaddin GF, Asaad DS. Strain hardening ultra-high performance fiber reinforced cementitious composites: effect of fiber type and concentration. Compos Part B 2016;103:74‒83. 链接1

[ 9 ] Li PP, Sluijsmans MJC, Brouwers HJH, Yu QL. Functionally graded ultra-high performance cementitious composite with enhanced impact properties. Compos Part B 2020;183:107680. 链接1

[10] Feng J, Gao X, Li J, Dong H, Yao W, Wang X, et al. Influence of fiber mixture on impact response of ultra-high-performance hybrid fiber reinforced cementitious composite. Compos Part B 2019;163:487‒96. 链接1

[11] Su Y, Li J, Wu C, Wu P, Li Z. Influences of nano-particles on dynamic strength of ultra-high performance concrete. Compos Part B 2016;91:595‒609. 链接1

[12] Ahmad S, Rasul M, Adekunle SK, Al-dulaijan SU, Maslehuddin M, Ali SI. Mechanical properties of steel fiber-reinforced UHPC mixtures exposed to elevated temperature: effects of exposure duration and fiber content. Compos Part B 2019;168:291‒301. 链接1

[13] Wille K. Concrete strength dependent pull-out behavior of deformed steel fibers. In: Joaquim AOB, editor. Proceedings pro088: 8th RILEM International Symposium on Fibre Reinforced Concrete: Challenges and Opportunities; 2012 Sep 19‒21; Guimarães, Portugal. Paris: RILEM Publications SARL; 2012. p. 123‒35.

[14] Tai YS, El-Tawil S. High loading-rate pullout behavior of inclined deformed steel fibers embedded in ultra-high performance concrete. Constr Build Mater 2017;148:204‒18. 链接1

[15] Cao YYY, Yu QL. Effect of inclination angle on hooked end steel fiber pullout behavior in ultra-high performance concrete. Compos Struct 2018;201:151‒60. 链接1

[16] Maage M. Interaction between steel fibers and cement based matrixes. Mater Constr 1977;10(5):297‒301. 链接1

[17] Zhang C, Shi C, Wu Z, Ouyang X, Li K. Numerical and analytical modeling of fiber-matrix bond behaviors of high performance cement composite. Cement Concr Res 2019;125:105892. 链接1

[18] Yoo DY, Gim JY, Chun B. Effects of rust layer and corrosion degree on the pullout behavior of steel fibers from ultra-high-performance concrete. Integr Med Res 2020;9(3):3632‒48. 链接1

[19] Wu Z, Khayat KH, Shi C. How do fiber shape and matrix composition affect fiber pullout behavior and flexural properties of UHPC? Cement Concr Compos 2018;90:193‒201. 链接1

[20] Wille K, Naaman AE. Effect of ultra-high-performance concrete on pullout behavior of high-strength brass-coated straight steel fibers. ACI Mater J 2013;110(4):451‒61. 链接1

[21] ACI Committee 544. ACI 544.9R‒2017 Report on measuring mechanical properties of hardened fiber-reinforce concrete. Report. Farmington Hills: American Concrete Institute; 2017.

[22] Wu Z, Shi C, Khayat KH. Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC). Cement Concr Compos 2016;71:97‒109. 链接1

[23] Wu Z, Shi C, Khayat KH. Multi-scale investigation of microstructure, fiber pullout behavior, and mechanical properties of ultra-high performance concrete with nano-CaCO3 particles. Cement Concr Compos 2018;86:255‒65. 链接1

[24] Markovic I. High-performance hybrid-fibre concrete: development and utilisation [dissertation]. Delft: Delft University of Technology; 2006.

[25] Gray RJ. Experimental techniques for measuring fibre/matrix interfacial bond shear strength. Int J Adhes Adhes 1983;3(4):197‒202. 链接1

[26] Lee Y, Kang ST, Kim JK. Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix. Constr Build Mater 2010;24(10):2030‒41. 链接1

[27] Bentur A, Mindess S. Fibre reinforced cementitious composites. 2nd ed. Oxfordshire: Francis & Taylor; 2007. 链接1

[28] Kim M, Yoo DY. Cryogenic pullout behavior of steel fibers from ultra-high-performance concrete under impact loading. Constr Build Mater 2020;239:117852. 链接1

[29] Banthia N. A study of some factors affecting the fiber‒matrix bond in steel fiber‒reinforced concrete. Can J Civ Eng 1990;17(4):610‒20. 链接1

[30] Yoo DY, Kim JJ, Park JJ. Effect of fiber spacing on dynamic pullout behavior of multiple straight steel fibers in ultra-high-performance concrete. Constr Build Mater 2019;210:461‒72. 链接1

[31] Robins P, Austin S, Jones P. Pull-out behaviour of hooked steel fibres. Mater Struct 2002;35(7):434‒42. 链接1

[32] Abdallah S, Fan M, Zhou X. Pull-out behaviour of hooked end steel fibres embedded in ultra-high performance mortar with various W/B ratios. Int J Concr Struct Mater 2017;11(2):301‒13. 链接1

[33] Beglarigale A, Yazıcı H. Pull-out behavior of steel fiber embedded in flowable RPC and ordinary mortar. Constr Build Mater 2015;75:255‒65. 链接1

[34] McSwain AC, Berube KA, Cusatis G, Landis EN. Confinement effects on fiber pullout forces for ultra-high-performance concrete. Cem Concr Compos J 2018;91:53‒8. 链接1

[35] Park SH, Ryu GS, Koh KT, Kim DJ. Effect of shrinkage reducing agent on pullout resistance of high-strength steel fibers embedded in ultra-high-performance concrete. Cement Concr Compos 2014;49:59‒69. 链接1

[36] Wille K, Naaman AE. Bond stress-slip behavior of steel fibers embedded in ultra high performance concrete. In: Mechtcherine V, Kaliske M, editors. In: Proceedings of the 18th European Conference on Fracture and Damage of Advanced Fiber-Reinforced Cement-Based Materials; 2010 Aug 29‒Sep 3; Dresden, Germany. Zweigstelle: Aedificatio Verlag; 2010. p. 99‒111.

[37] Yoo DY, Kim S, Kim JJ, Chun B. An experimental study on pullout and tensile behavior of ultra-high-performance concrete reinforced with various steel fibers. Constr Build Mater 2019;206:46‒61. 链接1

[38] Chan Y, Chu S. Effect of silica fume on steel fiber bond characteristics in reactive powder concrete 2004;34:1167‒72. 链接1

[39] China Association for Engineering Construction Standardization Committee. CECS13‒2009: the testing method for property of bond between steel fiber and mortar. Chinese standard. Beijing: China planning press; 2009. Chinese.

[40] Deng F, Ding X, Chi Y, Xu L, Wang L. The pull-out behavior of straight and hooked-end steel fiber from hybrid fiber reinforced cementitious composite: experimental study and analytical modelling. Compos Struct 2018;206:693‒712. 链接1

[41] Qi J, Wu Z, Ma ZJ, Wang J. Pullout behavior of straight and hooked-end steel fibers in UHPC matrix with various embedded angles. Constr Build Mater 2018;191:764‒74. 链接1

[42] Gray RJ. Analysis of the effect of embedded fibre length on fibre debonding and pull-out from an elastic matrix-part 2 application to a steel fibre-cementitious matrix composite system. J Mater Sci 1984;19(5):1680‒91. 链接1

[43] Bartos P. Review paper: bond in fibre reinforced cements and concretes. Int J Cem Compos Light Concr 1981;3(3):159‒77. 链接1

[44] Beaumont PWR, Aleszka JC. Cracking and toughening of concrete and polymer-concrete dispersed with short steel wires. J Mater Sci 1978;13(8):1749‒60. 链接1

[45] Wu Z, Shi C, Khayat KH, Wan S. Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC). Cement Concr Compos 2016;70:24‒34. 链接1

[46] Wu Z, Khayat KH, Shi C. Effect of nano-SiO2 particles and curing time on development of fiber‒matrix bond properties and microstructure of ultra-high strength concrete. Cement Concr Res 2017;95:247‒56. 链接1

[47] Scrivener KL, Crumbie AK, Laugesen P. The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Sci 2004;12(4):411‒21. 链接1

[48] Frazão C, Barros J, Camões A, Alves AC, Rocha L. Corrosion effects on pullout behavior of hooked steel fibers in self-compacting concrete. Cement Concr Res 2016;79:112‒22. 链接1

[49] Yoo DY, Kim JJ, Chun B. Dynamic pullout behavior of half-hooked and twisted steel fibers in ultra-high-performance concrete containing expansive agents. Compos, Part B Eng 2019;167:517‒32. 链接1

[50] Kang ST, Kim JK. The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC). Cement Concr Res 2011;41(10):1001‒14. 链接1

[51] Alwan JM, Naaman AE, Guerrero P. Effect of mechanical clamping on the pull-out response of hooked steel fibers embedded in cementitious matrices. Mater Struct 1999;1:15‒25.

[52] Pompo A, Stupak PR, Nicolais L, Marchese B. Analysis of steel fiber pull-out from a cement matrix using video photography. Cement Concr Compos 1996;18(1):3‒8. 链接1

[53] Abdallah S, Fan M, Rees DWA. Analysis and modelling of mechanical anchorage of 4D/5D hooked end steel fibres. Mater Des 2016;112:539‒52. 链接1

[54] Isla F, Ruano G, Luccioni B. Analysis of steel fibers pull-out. Experimental study. Constr Build Mater 2015;100:183‒93. 链接1

[55] Zıle E, Zıle O. Effect of the fiber geometry on the pullout response of mechanically deformed steel fibers. Cement Concr Res 2013;44:18‒24. 链接1

[56] Chanvillard G, Aïtcin PC. Pull-out behavior of corrugated steel fibers: qualitative and statistical analysis. Adv Cement Base Mater 1996;4(1):28‒41. 链接1

[57] American Society for Testing and Materials (ASTM). C1856/C1856M-17: standard practice for fabricating and testing specimens of ultra-high performance. West Conshohocken: ASTM International; 2017.

[58] Kim JJ, Kim DJ, Kang ST, Lee JH. Influence of sand to coarse aggregate ratio on the interfacial bond strength of steel fibers in concrete for nuclear power plant. Nucl Eng Des 2012;252:1‒10. 链接1

[59] Wille K, Naaman AE. Pullout behavior of high-strength steel fibers embedded in ultra-high-performance concrete. ACI Mater J 2012;109:479‒88. 链接1

[60] Chun B, Yoo DY, Banthia N. Achieving slip-hardening behavior of sanded straight steel fibers in ultra-high-performance concrete. Cement Concr Compos 2020;113:103669. 链接1

[61] Feng J, Sun WW, Wang XM, Shi XY. Mechanical analyses of hooked fiber pullout performance in ultra-high-performance concrete. Constr Build Mater 2014;69:403‒10. 链接1

[62] Tai YS, El-Tawil S, Chung TH. Performance of deformed steel fibers embedded in ultra-high performance concrete subjected to various pullout rates. Cement Concr Res 2016;89:1‒13. 链接1

[63] Abdallah S, Fan M. Anchorage mechanisms of novel geometrical hooked-end steel fibres. Mater Struct Constr 2017;50(2):139. 链接1

[64] HLM.A. Cox, Ae.S FR, Mech.E AMI. The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 1952;3(3):72‒9. 链接1

[65] Chen X, Beyerlein IJ, Brinson LC. Curved-fiber pull-out model for nanocomposites. Part 1: bonded stage formulation. Mech Mater 2009;41(3):279‒92. 链接1

[66] Nairn JA. On the use of shear-lag methods for analysis of stress transfer in unidirectional composites. Mech Mater 1997;26(2):63‒80. 链接1

[67] Gao X, Li K. A shear-lag model for carbon nanotube-reinforced polymer composites. Int J Solids Struct 2005;42(5‒6):1649‒67.

[68] Rosen BW. Tensile failure of fibrous composites. AIAA J 1964;2(11):1985‒91. 链接1

[69] Lawrence P. Some theoretical considerations of fibre pull-out from an elastic matrix variation of fibre load. J Mater Sci 1972;7(1):1‒6. 链接1

[70] Wang Y, Li VC, Backer S. Modelling of fibre pull-out from a cement matrix. Int J Cem Compos Light Concr 1988;10(3):143‒9. 链接1

[71] Naaman AE, Namur GG, Alwan JM, Najm HS. Fiber pullout and bond slip. I: analytical study. J Struct Eng 1991;117(9):2769‒90. 链接1

[72] Naaman AE, Namur GG, Alwan JM, Najm HS. Fiber pullout and bond slip. II: experimental validation. J Struct Eng 1991;117(9):2791‒800. 链接1

[73] Gao YC, Mai YW, Cotterell B. Fracture of fiber-reinforced materials. Z Angew Math Phys 1988;39(4):550‒72. 链接1

[74] Li VC, Chan YW. Determination of interfacial debond mode for fiber-reinforced cementitious composites. J Eng Mech 1994;120(4):707‒19. 链接1

[75] Kim JK, Baillie C, Mai YW. Interfacial debonding and fibre pull-out stresses. Part I critical comparison of existing theories with experiments. J Mater Sci 1992;27(12):3143‒54. 链接1

[76] Zhan Y, Meschke G. Analytical model for the pullout behavior of straight and hooked-end steel fibers. J Eng Mech 2014;140(12):04014091. 链接1

[77] Chanvillard G. Modeling the pullout of wire-drawn steel fibers. Cement Concr Res 1999;29(7):1027‒37. 链接1

[78] Soetens T, Van Gysel A, Matthys S, Taerwe L. A semi-analytical model to predict the pull-out behaviour of inclined hooked-end steel fibres. Constr Build Mater 2013;43:253‒65. 链接1

[79] Cunha VMCF, Barros JAO, Sena-cruz J. Analytical model for bond-slip of hooked-end steel fibers. In: BarrosJ, FerreiraAM, editors. Proceedings of the International Conference Challenges for Civil Construction |e Bridge Science and Applications with Engineering Towards Innovative Solutions: Safety, Sustainability and Rehabilitation With Innovative Solutions; 2008 Apr 16‒18; Porto, Portugal. Porto: FEUP Edições; 2008. p. 1‒12. 链接1

[80] Abdallah S, Rees DWA. Comparisons between pull-out behaviour of various hooked-end fibres in normal‒high strength concretes. Int J Concr Struct Mater 2019;13:27. 链接1

[81] Sujivorakul C, Waas AM, Naaman AE. Pullout response of a smooth fiber with an end anchorage. J Eng Mech 2000;126(9):986‒93. 链接1

[82] Ghoddousi P, Ahmadi R, Sharifi M. Fiber pullout model for aligned hooked-end steel fiber. Can J Civ Eng 2010;37(9):1179‒88. 链接1

[83] Won J, Lee J, Lee S. Predicting pull-out behaviour based on the bond mechanism of arch-type steel fibre in cementitious composite. Compos Struct 2015;134:633‒44. 链接1

[84] Zhang H, Ji T, Lin X. Pullout behavior of steel fibers with different shapes from ultra-high performance concrete (UHPC) prepared with granite powder under different curing conditions. Constr Build Mater 2019;211:688‒702. 链接1

[85] Yoo DY, Choi HJ, Kim S. Bond-slip response of novel half-hooked steel fibers in ultra-high-performance concrete. Constr Build Mater 2019;224:743‒61. 链接1

[86] Chun B, Yoo DY. Hybrid effect of macro and micro steel fibers on the pullout and tensile behaviors of ultra-high-performance concrete. Compos Part B Eng 2019;162:344‒60. 链接1

[87] Banthia N, Trottier J. Concrete reinforced with deformed steel fibers, part I: bond-slip mechanisms. ACI Mater J 1994;91(5):435‒46. 链接1

[88] Kim JJ, Yoo DY. Effects of fiber shape and distance on the pullout behavior of steel fibers embedded in ultra-high-performance concrete. Cement Concr Compos 2019;103:213‒23. 链接1

[89] Xu M, Hallinan B, Wille K. Effect of loading rates on pullout behavior of high strength steel fibers embedded in ultra-high performance concrete. Cement Concr Compos 2016;70:98‒109. 链接1

[90] Abu-Lebdeh T, Hamoush S, Heard W, Zornig B. Effect of matrix strength on pullout behavior of steel fiber reinforced very-high strength concrete composites. Constr Build Mater 2011;25(1):39‒46. 链接1

[91] Yoo DY, Chun B, Kim JJ. Bond performance of abraded arch-type steel fibers in ultra-high-performance concrete. Cement Concr Compos 2020;109:103538. 链接1

[92] Chin CS, Xiao RY. Experimental and nonlinear finite element analysis of fiber-cementitious matrix bond-slip mechanism. High Perform Fiber Reinf Cem Compos 2012;2:145‒52. 链接1

[93] Kang ST, Lee BY, Kim JK, Kim YY. The effect of fibre distribution characteristics on the flexural strength of steel fibre-reinforced ultra high strength concrete. Constr Build Mater 2011;25(5):2450‒7. 链接1

[94] Cunha MCF. Steel fibre reinforced self-compacting concrete (from micro-mechanics to composite behaviour) [dissertation]. Braga: University of Minho; 2010.

[95] Yoo DY, Park JJ, Kim SW. Fiber pullout behavior of HPFRCC: effects of matrix strength and fiber type. Compos Struct 2017;174:263‒76. 链接1

[96] Yang L, Shi C, Wu Z. Mitigation techniques for autogenous shrinkage of ultra-high-performance concrete—a review. Compos Part B 2019;178:107456. 链接1

[97] Park SH, Kim DJ, Ryu GS, Koh KT. Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cement Concr Compos 2012;34(2):172‒84. 链接1

[98] Zhang Y, Zhu Y, Qu S, Kumar A, Shao X. Improvement of flexural and tensile strength of layered-casting UHPC with aligned steel fibers. Constr Build Mater 2020;251:118893. 链接1

[99] Wu Z, Shi C, He W, Wang D. Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements. Cement Concr Compos 2017;79:148‒57. 链接1

[100] Abdallah S, Fan M, Cashell KA. Bond-slip behaviour of steel fibres in concrete after exposure to elevated temperatures. Constr Build Mater 2017;140:542‒51. 链接1

[101] Kim MJ, Yoo DY. Analysis on enhanced pullout resistance of steel fibers in ultra-high performance concrete under cryogenic condition. Constr Build Mater 2020;251:118953. 链接1

相关研究