期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第14卷 第7期 doi: 10.1016/j.eng.2021.12.013

二氧化碳捕集、利用与封存技术

State Key Laboratory of Clean Energy Utilization, State Environmental Protection Engineering Center for Coal-Fired Air Pollution Control, Zhejiang University, Hangzhou 310027, China

收稿日期: 2021-07-12 00:00:00 修回日期: 2021-11-09 00:00:00 录用日期: 2021-12-27 00:00:00 发布日期: 2022-02-16

下一篇 上一篇

摘要

人类活动造成的二氧化碳(CO2 )排放是引起全球变暖和气候变化的主要原因之一。绝大部分二氧化碳 的排放来源于化石燃料燃烧,以及钢铁和水泥生产等工业过程。二氧化碳的排放会导致气候变化,而二 氧化碳捕集、利用与封存(CCUS)是一种可持续性技术,在减排方面具有前景。从这个角度而言,二氧化 碳捕集着重于化学吸收技术,主要原因在于其商业化潜力。本文对各种化学溶剂吸收二氧化碳的能力和 速率进行了总结。二氧化碳的利用重点在于电化学转化途径,即将二氧化碳转化为具有潜在价值的化学 品,这一途径已经备受关注。通过不同二氧化碳减排产品的法拉第转换效率,可对效率的改善情况进行 说明。为了成功应用二氧化碳封存技术,需要更好地了解流体力学、地质力学以及反应运移,本文将详细讨论这几点。

图片

图1

图2

图3

参考文献

[ 1 ] Yoro KO, Daramola MO. Chapter 1—CO2 emission sources, greenhouse gases, and the global warming effect. In: Rahimpour MR, Farsi M, Makarem MA, editors. Advances in carbon capture. Cambridge: Woodhead Publishing; 2020. p. 3‒28. 链接1

[ 2 ] Zhang Z, Wang T, Blunt MJ, Anthony EJ, Park AH, Hughes RW, et al. Advances in carbon capture, utilization and storage. Appl Energy 2020;278:115627. 链接1

[ 3 ] Intergovernmental Panel on Climate Change. Global warming of 1.5 ℃: an IPCC special report on the impacts of global warming of 1.5 ℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. Report. Geneva: Intergovernmental Panel on Climate Change; 2018. 链接1

[ 4 ] International Energy Agency. Global energy & CO2 status report 2019. Report. Paris: International Energy Agency; 2020.

[ 5 ] Fan JL, Shen S, Xu M, Yang Y, Yang L, Zhang X. Cost-benefit comparison of carbon capture, utilization, and storage retrofitted to different thermal power plants in China based on real options approach. Adv Clim Chang Res 2020;11(4):415‒28. 链接1

[ 6 ] Wang T, Liu F, Ge K, Fang M. Reaction kinetics of carbon dioxide absorption in aqueous solutions of piperazine, N-(2-aminoethyl) ethanolamine and their blends. Chem Eng J 2017;314:123‒31. 链接1

[ 7 ] Yu W, Wang T, Park AH, Fang M. Review of liquid nano-absorbents for enhanced CO2 capture. Nanoscale 2019;11(37):17137‒56. 链接1

[ 8 ] Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, et al. Carbon capture and storage update. Energy Environ Sci 2014;7(1):130‒89. 链接1

[ 9 ] Stéphenne K. Start-up of world’s first commercial post-combustion coal fired CCS project: contribution of Shell Cansolv to Saskpower Boundary Dam ICCS project. Energy Procedia 2014;63:6106‒10. 链接1

[10] Mantripragada HC, Zhai H, Rubin ES. Boundary Dam or Petra Nova—which is a better model for CCS energy supply? Int J Greenh Gas Control 2019;82:59‒68. 链接1

[11] Global Carbon Capture and Storage Institute. Carbon capture and storage: global status report 2019. Report. Melbourne: Global Carbon Capture and Storage Institute; 2019.

[12] Wu X, Wang M, Liao P, Shen J, Li Y. Solvent-based post-combustion CO2 capture for power plants: a critical review and perspective on dynamic modelling, system identification, process control and flexible operation. Appl Energy 2020;257:113941. 链接1

[13] Aronu UE, Hoff KA, Svendsen HF. CO2 capture solvent selection by combined absorption‒desorption analysis. Chem Eng Res Des 2011;89(8):1197‒203. 链接1

[14] Dallos A, Altsach T, Kotsis L. Enthalpies of absorption and solubility of carbon dioxide in aqueous polyamine solutions. J Therm Anal Calorim 2001;65(2):419‒23. 链接1

[15] Singh P, Niederer JPM, Versteeg GF. Structure and activity relationships for amine-based CO2 absorbents—II. Chem Eng Res Des 2009;87(2):135‒44. 链接1

[16] Zhu D, Fang M, Lv Z, Wang Z, Luo Z. Selection of blended solvents for CO2 absorption from coal-fired flue gas. Part 1: monoethanolamine (MEA)-based solvents. Energy Fuels 2012;26(1):147‒53. 链接1

[17] Kim S, Shi H, Lee JY. CO2 absorption mechanism in amine solvents and enhancement of CO2 capture capability in blended amine solvent. Int J Greenh Gas Control 2016;45:181‒8. 链接1

[18] Liu F, Fang M, Yi N, Wang T. Research on alkanolamine-based physical‍‒chemical solutions as biphasic solvents for CO2 capture. Energy Fuels 2019;33(11):11389‒98. 链接1

[19] Zhou X, Jing G, Lv B, Liu F, Zhou Z. Low-viscosity and efficient regeneration of carbon dioxide capture using a biphasic solvent regulated by 2-amino-2-methyl-1-propanol. Appl Energy 2019;235:379‒90. 链接1

[20] Lv B, Zhou X, Zhou Z, Jing G. Kinetics and thermodynamics of CO2 absorption into a novel DETA‒AMP‒PMDETA biphasic solvent. ACS Sustain Chem Eng 2019;7(15):13400‒10. 链接1

[21] Yuan Y, Rochelle GT. CO2 absorption rate in semi-aqueous monoethanolamine. Chem Eng Sci 2018;182:56‒66. 链接1

[22] Guo H, Li H, Shen S. CO2 capture by water-lean amino acid salts: absorption performance and mechanism. Energy Fuels 2018;32(6):6943‒54. 链接1

[23] Wanderley RR, Knuutila HK. Mapping diluents for water-lean solvents: a parametric study. Ind Eng Chem Res 2020;59(25):11656‒80. 链接1

[24] Lu R, Li K, Chen J, Yu H, Tade M. CO2 capture using piperazine-promoted, aqueous ammonia solution: rate-based modelling and process simulation. Int J Greenh Gas Control 2017;65:65‒75. 链接1

[25] Liu J, Wang S, Svendsen HF, Idrees MU, Kim I, Chen C. Heat of absorption of CO2 in aqueous ammonia, piperazine solutions and their mixtures. Int J Greenh Gas Control 2012;9:148‒59. 链接1

[26] Qi G, Wang S, Lu W, Yu J, Chen C. Vapor‒liquid equilibrium of CO2 in NH3‒CO2‒SO2‒H2O system. Fluid Phase Equilib 2015;386:47‒55. 链接1

[27] Kurz F, Rumpf B, Maurer G. Vapor‒liquid‒solid equilibria in the system NH3‒CO2‒H2O from around 310 to 470 K: new experimental data and modeling. Fluid Phase Equilib 1995;104:261‒75. 链接1

[28] Lee A, Mumford KA, Wu Y, Nicholas N, Stevens GW. Understanding the vapour‒liquid equilibrium of CO2 in mixed solutions of potassium carbonate and potassium glycinate. Int J Greenh Gas Control 2016;47:303‒9. 链接1

[29] Kang D, Lee MG, Yoo Y, Park J. Absorption characteristics of potassium carbonate-based solutions with rate promoters and corrosion inhibitors. J Mater Cycles Waste Manag 2018;20(3):1562‒73. 链接1

[30] Wang T, Ge K, Chen K, Hou C, Fang M. Theoretical studies on CO2 capture behavior of quaternary ammonium-based polymeric ionic liquids. Phys Chem Chem Phys 2016;18(18):13084‒91. 链接1

[31] Wang C, Luo X, Zhu X, Cui G, Jiang D, Deng D, et al. The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids. RSC Adv 2013;3(36):15518. 链接1

[32] Song HJ, Park S, Kim H, Gaur A, Park JW, Lee SJ. Carbon dioxide absorption characteristics of aqueous amino acid salt solutions. Int J Greenh Gas Control 2012;11:64‒72. 链接1

[33] Zarei A, Hafizi A, Rahimpour MR, Raeissi S. Carbon dioxide absorption into aqueous potassium salt solutions of glutamine amino acid. J Mol Liq 2020;301:111743. 链接1

[34] Ma’mun S. Amino-acid-salt-based carbon dioxide capture: precipitation behavior of potassium sarcosine solution. IOP Conf Ser: Mater Sci Eng 2020;811(1):012033. 链接1

[35] Knipe JM, Chavez KP, Hornbostel KM, Worthington MA, Nguyen DT, Ye C, et al. Evaluating the performance of micro-encapsulated CO2 sorbents during CO2 absorption and regeneration cycling. Environ Sci Technol 2019;53(5):2926‒36. 链接1

[36] Vericella JJ, Baker SE, Stolaroff JK, Duoss EB, Hardin JO, Lewicki J, et al. Encapsulated liquid sorbents for carbon dioxide capture. Nat Commun 2015;6(1):6124. 链接1

[37] Kaviani S, Kolahchyan S, Hickenbottom KL, Lopez AM, Nejati S. Enhanced solubility of carbon dioxide for encapsulated ionic liquids in polymeric materials. Chem Eng J 2018;354:753‒7. 链接1

[38] Jiang Y, Zhang Z, Fan J, Yu J, Bi D, Li B, et al. Experimental study on comprehensive carbon capture performance of TETA-based nanofluids with surfactants. Int J Greenh Gas Control 2019;88:311‒20. 链接1

[39] Du Y, Yuan Y, Rochelle GT. Capacity and absorption rate of tertiary and hindered amines blended with piperazine for CO2 capture. Chem Eng Sci 2016;155:397‒404. 链接1

[40] Zhuang Q, Clements B, Dai J, Carrigan L. Ten years of research on phase separation absorbents for carbon capture: achievements and next steps. Int J Greenh Gas Control 2016;52:449‒60. 链接1

[41] Sutherland BR. Pricing CO2 direct air capture. Joule 2019;3(7):1571‒3. 链接1

[42] Hepburn C, Adlen E, Beddington J, Carter EA, Fuss S, Mac Dowell N, et al. The technological and economic prospects for CO2 utilization and removal. Nature 2019;575(7781):87‒97. 链接1

[43] Chauvy R, De Weireld G. CO2 utilization technologies in Europe: a short review. Energy Technol 2020;8(12):2000627. 链接1

[44] Chauvy R, Meunier N, Thomas D, De Weireld G. Selecting emerging CO2 utilization products for short- to mid-term deployment. Appl Energy 2019;236:662‒80. 链接1

[45] Gao D, Zhou H, Wang J, Miao S, Yang F, Wang G, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc 2015;137(13):4288‒91. 链接1

[46] Gu J, Hsu CS, Bai L, Chen HM, Hu X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019;364(6445):1091‒4. 链接1

[47] Zhang X, Wang Y, Gu M, Wang M, Zhang Z, Pan W, et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat Energy 2020;5(9):684‒92. 链接1

[48] Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016;529(7584):68‒71. 链接1

[49] Zheng X, De Luna P, García de Arquer FP, Zhang B, Becknell N, Ross MB, et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 2017;1(4):794‒805. 链接1

[50] Fan K, Jia Y, Ji Y, Kuang P, Zhu B, Liu X, et al. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal 2020;10(1):358‒64. 链接1

[51] Le M, Ren M, Zhang Z, Sprunger PT, Kurtz RL, Flake JC. Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J Electrochem Soc 2011;158(5):E45‒9. 链接1

[52] Safdar Hossain S, Rahman S, Ahmed S. Electrochemical reduction of carbon dioxide over CNT-supported nanoscale copper electrocatalysts. J Nanomater 2014;2014:1‒10. 链接1

[53] Zhao K, Liu Y, Quan X, Chen S, Yu H. CO2 electroreduction at low overpotential on oxide-derived Cu/carbons fabricated from metal organic framework. ACS Appl Mater Interfaces 2017;9(6):5302‒11. 链接1

[54] Zhao Q, Zhang C, Hu R, Du Z, Gu J, Cui Y, et al. Selective etching quaternary MAX Phase toward single atom copper immobilized MXene (Ti3C2Clx) for efficient CO2 electroreduction to methanol. ACS Nano 2021;15(3):4927‒36. 链接1

[55] Weng Z, Jiang J, Wu Y, Wu Z, Guo X, Materna KL, et al. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J Am Chem Soc 2016;138(26):8076‒9. 链接1

[56] Wang Y, Chen Z, Han P, Du Y, Gu Z, Xu X, et al. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal 2018;8(8):7113‒9. 链接1

[57] Jeon HS, Timoshenko J, Scholten F, Sinev I, Herzog A, Haase FT, et al. Operando insight into the correlation between the structure and composition of CuZn nanoparticles and their selectivity for the electrochemical CO2 reduction. J Am Chem Soc 2019;141(50):19879‒87. 链接1

[58] Hu Q, Han Z, Wang X, Li G, Wang Z, Huang X, et al. Facile synthesis of sub-nanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane. Angew Chem Int Ed Engl 2020;59(43):19054‒9. 链接1

[59] Zhong M, Tran K, Min Y, Wang C, Wang Z, Dinh CT, et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020;581(7807):178‒83. 链接1

[60] Ren D, Deng Y, Handoko AD, Chen CS, Malkhandi S, Yeo BS. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal 2015;5(5):2814‒21. 链接1

[61] Ma S, Sadakiyo M, Heima M, Luo R, Haasch RT, Gold JI, et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu‍‒‍Pd catalysts with different mixing patterns. J Am Chem Soc 2017;139(1):47‒50. 链接1

[62] Hoang TTH, Verma S, Ma S, Fister TT, Timoshenko J, Frenkel AI, et al. Nanoporous copper‍‒‍silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J Am Chem Soc 2018;140(17):5791‒7. 链接1

[63] Ren D, Ang BSH, Yeo BS. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived Cu × Zn catalysts. ACS Catal 2016;6(12):8239‒47. 链接1

[64] Li YC, Wang Z, Yuan T, Nam DH, Luo M, Wicks J, et al. Binding site diversity promotes CO2 electroreduction to ethanol. J Am Chem Soc 2019;‍141(21):8584‒91. 链接1

[65] Wang X, Wang Z, García de Arquer FP, Dinh CT, Ozden A, Li YC, et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat Energy 2020;5(6):478‒86. 链接1

[66] Nitopi S, Bertheussen E, Scott SB, Liu X, Engstfeld AK, Horch S, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev 2019;119(12):7610‒72. 链接1

[67] Chen C, Zhu X, Wen X, Zhou Y, Zhou L, Li H, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat Chem 2020;‍12(8):717‒24. 链接1

[68] Dinh CT, Burdyny T, Kibria MG, Seifitokaldani A, Gabardo CM, García de Arquer FP, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018;360(6390):783‒7. 链接1

[69] De Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019;364(6438):eaav3506. Corrected in: Science 2020;367(6482):abb0992. 链接1

[70] Zhang Z, Pan SY, Li H, Cai J, Olabi AG, Anthony EJ, et al. Recent advances in carbon dioxide utilization. Renew Sustain Energy Rev 2020;125:109799. 链接1

[71] International Energy Agency. World Energy Outlook 2019: the gold standard of energy analysis. Report. Paris: International Energy Agency; 2019. 链接1

[72] Cuéllar-Franca RM, Azapagic A. Carbon capture, storage and utilization technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Util 2015;9:82‒102. 链接1

[73] de Coninck H, Benson SM. Carbon dioxide capture and storage: issues and prospects. Annu Rev Environ Resour 2014;39(1):243‒70. 链接1

[74] Altman SJ, Aminzadeh B, Balhoff MT, Bennett PC, Bryant SL, Cardenas MB, et al. Chemical and hydrodynamic mechanisms for long-term geological carbon storage. J Phys Chem C 2014;118(28):15103‒13. 链接1

[75] Blunt MJ. Multiphase flow in permeable media: a pore-scale perspective. Cambridge: Cambridge University Press; 2017 Feb. 链接1

[76] Alhosani A, Scanziani A, Lin Q, Raeini AQ, Bijeljic B, Blunt MJ. Pore-scale mechanisms of CO2 storage in oilfields. Sci Rep 2020;10:8534. 链接1

相关研究