期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第16卷 第9期 doi: 10.1016/j.eng.2022.01.010

住宅建筑需求侧柔性——定义、柔性负荷及量化方法

a College of Civil Engineering, Hunan University, Changsha 410006, China
b Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, Changsha 410006, China
c School of Business, Society & Engineering, Mälardalen University, Vasteras 999027, Sweden

收稿日期: 2021-09-17 修回日期: 2022-01-05 录用日期: 2022-01-28 发布日期: 2022-03-18

下一篇 上一篇

摘要

本文综述了近年来关于住宅建筑需求侧柔性的定义、柔性负荷及柔性量化方法方面的研究。首先,针对建筑需求侧柔性、运行柔性和能源柔性等不同的术语,进行了系统的比较和区分;其次,对住宅建筑主要柔性负荷的运行特性和柔性能力进行了总结和比较;再次,对柔性负荷的建模方法和柔性量化指标也进行了详细的综述和总结。最后,提出了当前建筑需求侧柔性领域存在的一些亟待解决的问题。研究结果表明当前针对住宅建筑需求侧柔性的研究主要以中央空调、储水式电热水器、湿电器、冰箱和照明为主,分别占现有研究的36.7%、25.7%、14.7%、9.2%和8.3%。这些柔性负荷在运行特性、使用频率和柔性能力
方面存在较大的差异,而对于它们实际的响应特性有待进一步研究。此外,本文给出了用于柔性负荷建模的白箱、灰箱和黑箱模型在不同应用场合下适用性的建议;对于柔性量化指标,现有研究主要从功率、时间、能量、效率、经济性和环保性等维度提出了大量的指标,但是缺少统一的柔性量化体系。本文能够帮助读者更好地理解建筑需求侧柔性、区分与柔性相关的不同的术语、了解住宅建筑不同柔性负荷的运行特性和柔性能力,同时也能为柔性负荷的建模和柔性量化的相关研究提供指导。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Jensen SØ, Marszal-Pomianowska A, Lollini R, Pasut W, Knotzer A, Engelmann P, et al. IEA EBC annex 67 energy flexible buildings. Energy Build 2017;155:25‒34. 链接1

[ 2 ] Pallonetto F, De Rosa M, D’Ettorre F, Finn DP. On the assessment and control optimisation of demand response programs in residential buildings. Renew Sustain Energy Rev 2020;127:109861. 链接1

[ 3 ] Bampoulas A, Saffari M, Pallonetto F, Mangina E, Finn DP. A fundamental unified framework to quantify and characterise energy flexibility of residential buildings with multiple electrical and thermal energy systems. Appl Energy 2021;282:116096. 链接1

[ 4 ] Kathirgamanathan A, De Rosa M, Mangina E, Finn DP. Data-driven predictive control for unlocking building energy flexibility: a review. Renew Sustain Energy Rev 2021;135:110120. 链接1

[ 5 ] Jin X, Wu Q, Jia H. Local flexibility markets: Literature review on concepts, models and clearing methods. Appl Energy 2020;261:114387. 链接1

[ 6 ] Li H, Wang Z, Hong T, Piette MA. Energy flexibility of residential buildings: a systematic review of characterization and quantification methods and applications. Adv Appl Energy 2021;3:100054. 链接1

[ 7 ] Tulabing R, Yin R, DeForest N, Li Y, Wang K, Yong T, et al. Modeling study on flexible load’s demand response potentials for providing ancillary services at the substation level. Electr Power Syst Res 2016;140:240‒52. 链接1

[ 8 ] D’hulst R, Labeeuw W, Beusen B, Claessens S, Deconinck G, Vanthournout K. Demand response flexibility and flexibility potential of residential smart appliances: Experiences from large pilot test in Belgium. Appl Energy 2015;155:79‒90. 链接1

[ 9 ] Sørensen ÅL, Lindberg KB, Sartori I, Andresen I. Analysis of residential EV energy flexibility potential based on real-world charging reports and smart meter data. Energy Build 2021;241:110923. 链接1

[10] Dranka GG, Ferreira P. Load flexibility potential across residential, commercial and industrial sectors in Brazil. Energy 2020;201:117483. 链接1

[11] Heitkoetter W, Schyska BU, Schmidt D, Medjroubi W, Vogt T, Agert C. Assessment of the regionalised demand response potential in Germany using an open source tool and dataset. Adv Appl Energy 2021;1:100001. 链接1

[12] Ma Z, Knotzer A, Billanes JD, Jørgensen BN. A literature review of energy flexibility in district heating with a survey of the stakeholders’ participation. Renew Sustain Energy Rev 2020;123:109750. 链接1

[13] Lopes RA, Chambel A, Neves J, Aelenei D, Martins J. A literature review of methodologies used to assess the energy flexibility of buildings. Energy Procedia 2016;91:1053‒8. 链接1

[14] Reynders G, Lopes RA, Marszal-Pomianowska A, Aelenei D, Martins J, Saelens D. Energy flexible buildings: an evaluation of definitions and quantification methodologies applied to thermal storage. Energy Build 2018;166:372‒90. 链接1

[15] Bloess A, Schill WP, Zerrahn A. Power-to-heat for renewable energy integration: a review of technologies, modeling approaches, and flexibility potentials. Appl Energy 2018;212:1611‒26. 链接1

[16] Paiho S, Saastamoinen H, Hakkarainen E, Similä L, Pasonen R, Ikäheimo J, et al. Increasing flexibility of Finnish energy systems—A review of potential technologies and means. Sustain Cities Soc 2018;43:509‒23. 链接1

[17] Lund PD, Lindgren J, Mikkola J, Salpakari J. Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew Sustain Energy Rev 2015;45:785‒807. 链接1

[18] Chen Y, Xu P, Gu J, Schmidt F, Li W. Measures to improve energy demand flexibility in buildings for demand response (DR): a review. Energy Build 2018;177:125‒39. 链接1

[19] Tang H, Wang S, Li H. Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective. Energy 2021;219:119598. 链接1

[20] Jin Y, Xu J, Yan D, Sun H, An J, Tang J, et al. Appliance use behavior modelling and evaluation in residential buildings: A case study of television energy use. Build Simul 2020;13(4):787‒801. 链接1

[21] Billinton R, Fotuhi-Firuzabad M. A basic framework for generating system operating health analysis. IEEE Trans Power Syst 1994;9(3):1610‒7. 链接1

[22] Office of Energy Efficiency & Renewable Energy. Grid-Interactive Efficient Buildings|Department of Energy [Internet]. Washington, D.C.: U.S. Department of Energy; [cited 2021 Apr 28]. Available from: https://www.energy.gov/eere/buildings/grid-interactive-efficient-buildings. 链接1

[23] Neukomm M, Nubbe V, Fares R. Grid-interactive efficient buildings technical report series: overview of research challenges and gaps [Internet]. Washington, D.C.: U.S. Department of Energy; 2019 Dec [cited 2021 Apr 29]. Available from: https://www1.eere.energy.gov/buildings/pdfs/75470.pdf. 链接1

[24] Degefa MZ, Sperstad IB, Sæle H. Comprehensive classifications and characterizations of power system flexibility resources. Electr Power Syst Res 2021;194:107022. 链接1

[25] Alizadeh MI, Moghaddam MP, Amjady N, Siano P, Sheikh-El-Eslami MK. Flexibility in future power systems with high renewable penetration: a review. Renew Sustain Energy Rev 2016;57:1186‒93. 链接1

[26] Arteconi A, Mugnini A, Polonara F. Energy flexible buildings: a methodology for rating the flexibility performance of buildings with electric heating and cooling systems. Appl Energy 2019;251:113387. 链接1

[27] Junker RG, Azar AG, Lopes RA, Lindberg KB, Reynders G, Relan R, et al. Characterizing the energy flexibility of buildings and districts. Appl Energy 2018;225:175‒82. 链接1

[28] Hu M, Xiao F, Wang S. Neighborhood-level coordination and negotiation techniques for managing demand-side flexibility in residential microgrids. Renew Sustain Energy Rev 2021;135:110248. 链接1

[29] Liu J, Yin R, Pritoni M, Piette M, Neukomm M. Developing and evaluating metrics for demand flexibility in buildings: comparing simulations and field data. ACEEE Summer Study on Energy Efficiency in Buildings Conference; 2020 Aug 16‒21; Pacific City, CA, USA. ACEEE Summer Study; 2020.

[30] Stamminger R, Schmitz A. Load profiles and flexibility in operation of washing machines and dishwashers in Europe. Int J Consum Stud 2017;41(2):178‒87. 链接1

[31] Zhang Y, Campana PE, Yang Y, Stridh B, Lundblad A, Yan J. Energy flexibility from the consumer: integrating local electricity and heat supplies in a building. Appl Energy 2018;223:430‒42. 链接1

[32] Xu F, Zhang T, Lai LL, Zhou H. Shifting boundary for price-based residential demand response and applications. Appl Energy 2015;146:353‒70. 链接1

[33] Du J, Yu C, Pan W. Multiple influencing factors analysis of household energy consumption in high-rise residential buildings: evidence from Hong Kong. Build Simul 2020;13(4):753‒69. 链接1

[34] Zhou Y, Cao S. Quantification of energy flexibility of residential net-zero-energy buildings involved with dynamic operations of hybrid energy storages and diversified energy conversion strategies. Sustain Energy Grids 2020;21:100304. 链接1

[35] Chen Y, Chen Z, Xu P, Li W, Sha H, Yang Z, et al. Quantification of electricity flexibility in demand response: Office building case study. Energy 2019;188:116054. 链接1

[36] Li Y, Wang C, Li G, Wang J, Zhao D, Chen C. Improving operational flexibility of integrated energy system with uncertain renewable generations considering thermal inertia of buildings. Energy Convers Manage 2020;207:112526. 链接1

[37] Perera ATD, Nik VM, Wickramasinghe PU, Scartezzini JL. Redefining energy system flexibility for distributed energy system design. Appl Energy 2019;253:113572. 链接1

[38] Finck C, Li R, Kramer R, Zeiler W. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems. Appl Energy 2018;209:409‒25. 链接1

[39] Stinner S, Huchtemann K, Müller D. Quantifying the operational flexibility of building energy systems with thermal energy storages. Appl Energy 2016;181:140‒54. 链接1

[40] Corsetti E, Riaz S, Riello M, Mancarella P. Modelling and deploying multi-energy flexibility: The energy lattice framework. Adv Appl Energy 2021;2:100030. 链接1

[41] Ruggles TH, Dowling JA, Lewis NS, Caldeira K. Opportunities for flexible electricity loads such as hydrogen production from curtailed generation. Adv Appl Energy 2021;3:100051. 链接1

[42] Ziras C, Heinrich C, Pertl M, Bindner HW. Experimental flexibility identification of aggregated residential thermal loads using behind-the-meter data. Appl Energy 2019;242:1407‒21. 链接1

[43] Foteinaki K, Li R, Heller A, Rode C. Heating system energy flexibility of low-energy residential buildings. Energy Build 2018;180:95‒108. 链接1

[44] Ayón X, Gruber JK, Hayes BP, Usaola J, Prodanović M. An optimal day-ahead load scheduling approach based on the flexibility of aggregate demands. Appl Energy 2017;198:1‒11. 链接1

[45] Johra H, Heiselberg P, Le Dréau J. Influence of envelope, structural thermal mass and indoor content on the building heating energy flexibility. Energy Build 2019;183:325‒39. 链接1

[46] De Coninck R, Helsen L. Quantification of flexibility in buildings by cost curves‒methodology and application. Appl Energy 2016;162:653‒65. 链接1

[47] Nuytten T, Claessens B, Paredis K, Van Bael J, Six D. Flexibility of a combined heat and power system with thermal energy storage for district heating. Appl Energy 2013;104:583‒91. 链接1

[48] Yao R, Steemers K. A method of formulating energy load profile for domestic buildings in the UK. Energy Build 2005;37(6):663‒71. 链接1

[49] Sakah M, de la Rue du Can S, Diawuo FA, Sedzro MD, Kuhn C. A study of appliance ownership and electricity consumption determinants in urban Ghanaian households. Sustain Cities Soc 2019;44:559‒81. 链接1

[50] Yamaguchi Y, Chen C, Shimoda Y, Yagita Y, Iwafune Y, Ishii H, et al. An integrated approach of estimating demand response flexibility of domestic laundry appliances based on household heterogeneity and activities. Energy Policy 2020;142:111467. 链接1

[51] Goetzler B, Guernsey M, Kassuga T. Grid-interactive efficient buildings technical report series: heating, ventilation, and air conditioning (HVAC), water heating, appliances and refrigeration [Internet]. Washington, D.C.: U.S. Department of Energy; 2019 Dec [cited 2021 May 5]. Available from: https://www1.eere.energy.gov/buildings/pdfs/75473.pdf. 链接1

[52] ashrae.org [Internet]. Peachtree Corners: ASHRAE Handbook online; [cited 2021 Apr 28]. Available from: https://www.‍ashrae.‍org/technical-resources/ashrae-handbook/ashrae-handbook-online. 链接1

[53] Xu P, Haves P, Piette M, Zagreus L. Demand shifting with thermal mass in large commercial buildings: field tests, simulations and audits [Internet]. Berkeley: Lawrence Berkeley National Laboratory; 2006 Jan [cited 2021 May 5]. Available from: https://eta-publications.‍lbl.‍gov/sites/default/files/cec-500-2006-009.pdf. 链接1

[54] Troitzsch S, Sreepathi BK, Huynh TP, Moine A, Hanif S, Fonseca J, et al. Optimal electric-distribution-grid planning considering the demand-side flexibility of thermal building systems for a test case in Singapore. Appl Energy 2020;273:114917. 链接1

[55] Liu M, Heiselberg P. Energy flexibility of a nearly zero-energy building with weather predictive control on a convective building energy system and evaluated with different metrics. Appl Energy 2019;233:764‒75. 链接1

[56] Kara EC, Tabone MD, MacDonald JS, Callaway DS, Kiliccote S. Quantifying flexibility of residential thermostatically controlled loads for demand response: A data-driven approach. In: The 12th ACM Conference on Embedded Network Sensor Systems; 2014 Nov 3‒6; Memphis, TN, USA. New York: Association for Computing Machinery. 2014. 链接1

[57] Reynders G, Diriken J, Saelens D. Generic characterization method for energy flexibility: applied to structural thermal storage in residential buildings. Appl Energy 2017;198:192‒202. 链接1

[58] Vivian J, Chiodarelli U, Emmi G, Zarrella A. A sensitivity analysis on the heating and cooling energy flexibility of residential buildings. Sustain Cities Soc 2020;52:101815. 链接1

[59] Yin R, Xu P, Piette MA, Kiliccote S. Study on Auto-DR and pre-cooling of commercial buildings with thermal mass in California. Energy Build 2010;42(7):967‒75. 链接1

[60] Le Dréau J, Heiselberg P. Energy flexibility of residential buildings using short term heat storage in the thermal mass. Energy 2016;111:991‒1002. 链接1

[61] Hurtado LA, Rhodes JD, Nguyen PH, Kamphuis IG, Webber ME. Quantifying demand flexibility based on structural thermal storage and comfort management of non-residential buildings: A comparison between hot and cold climate zones. Appl Energy 2017;195:1047‒54. 链接1

[62] Nyholm E, Puranik S, Mata É, Odenberger M, Johnsson F. Demand response potential of electrical space heating in Swedish single-family dwellings. Build Environ 2016;96:270‒82. 链接1

[63] Kathirgamanathan A, Péan T, Zhang K, De Rosa M, Salom J, Kummert M, et al. Towards standardising market-independent indicators for quantifying energy flexibility in buildings. Energy Build 2020;220:110027. 链接1

[64] Huang S, Wu D. Validation on aggregate flexibility from residential air conditioning systems for building-to-grid integration. Energy Build 2019;200:58‒67. 链接1

[65] Yin R, Kara EC, Li Y, DeForest N, Wang K, Yong T, et al. Quantifying flexibility of commercial and residential loads for demand response using setpoint changes. Appl Energy 2016;177:149‒64. 链接1

[66] Kirby B, Kueck J, Laughner T, Morris K. Spinning reserve from hotel load response. Electr J 2008;21(10):59‒66. 链接1

[67] Chen Y, Xu P, Chen Z, Wang H, Sha H, Ji Y, et al. Experimental investigation of demand response potential of buildings: combined passive thermal mass and active storage. Appl Energy 2020;280:115956. 链接1

[68] Foteinaki K, Li R, Péan T, Rode C, Salom J. Evaluation of energy flexibility of low-energy residential buildings connected to district heating. Energy Build 2020;213:109804. 链接1

[69] Hao H, Lin Y, Kowli AS, Barooah P, Meyn S. Ancillary service to the grid through control of fans in commercial Building HVAC systems. IEEE Trans Smart Grid 2014;5(4):2066‒74. 链接1

[70] Maasoumy M, Ortiz J, Culler D. Flexibility of commercial building HVAC fan as ancillary service for smart grid. 2013. arXiv:1311.6094.

[71] Zhao P, Henze GP, Plamp S, Cushing VJ. Evaluation of commercial building HVAC systems as frequency regulation providers. Energy Build 2013;‍67:225‒35. 链接1

[72] Kim YJ, Fuentes E, Norford LK. Experimental study of grid frequency regulation ancillary service of a variable speed heat pump. IEEE Trans Power Syst 2016;31(4):3090‒9. 链接1

[73] Amabile L, Bresch-Pietri D, El Hajje G, Labbé S, Petit N. Optimizing the self-consumption of residential photovoltaic energy and quantification of the impact of production forecast uncertainties. Adv Appl Energy 2021;2:100020. 链接1

[74] Tejero-Gomez JA, Bayod-Rújula ÁA. Energy Management System design oriented for energy cost optimization in Electric Water Heaters. Energy Build 2021;243:111012. 链接1

[75] Pied M, Anjos MF, Malhamé RP. A flexibility product for electric water heater aggregators on electricity markets. Appl Energy 2020;280:115168. 链接1

[76] Kapsalis V, Hadellis L. Optimal operation scheduling of electric water heaters under dynamic pricing. Sustain Cities Soc 2017;31:109‒21. 链接1

[77] Pallonetto F, Oxizidis S, Milano F, Finn D. The effect of time-of-use tariffs on the demand response flexibility of an all-electric smart-grid-ready dwelling. Energy Build 2016;128:56‒67. 链接1

[78] Paull L, Li H, Chang L. A novel domestic electric water heater model for a multi-objective demand side management program. Electr Power Syst Res 2010;80(12):1446‒51. 链接1

[79] Nehrir MH, Jia R, Pierre DA, Hammerstrom DJ. Power management of aggregate electric water heater loads by voltage control. In: 2007 IEEEPower Engineering Society General Meeting; 2007 Jun 24‒28; Tampa, FL, USA. New York: IEEE; 2007. 链接1

[80] Wang C, Zhou Y, Wang J, Peng P. A novel Traversal-and-Pruning algorithm for household load scheduling. Appl Energy 2013;102:1430‒8. 链接1

[81] Lezama F, Soares J, Canizes B, Vale Z. Flexibility management model of home appliances to support DSO requests in smart grids. Sustain Cities Soc 2020;55:102048. 链接1

[82] Mohseni A, Mortazavi SS, Ghasemi A, Nahavandi A, Abdi MT. The application of household appliances’ flexibility by set of sequential uninterruptible energy phases model in the day-ahead planning of a residential microgrid. Energy 2017;139:315‒28. 链接1

[83] Moreau A. Control strategy for domestic water heaters during peak periods and its impact on the demand for electricity. Energy Procedia 2011;12:1074‒82. 链接1

[84] Kapsalis V, Safouri G, Hadellis L. Cost/comfort-oriented optimization algorithm for operation scheduling of electric water heaters under dynamic pricing. J Clean Prod 2018;198:1053‒65. 链接1

[85] Heffner GC, Goldman CA, Moezzi MM. Innovative approaches to verifying demand response of water heater load control. IEEE Trans Power Deliv 2006;21(1):388‒97. 链接1

[86] Paul A, Baumhögger E, Elsner A, Moczarski L, Reineke M, Sonnenrein G, et al. Determining the heat flow through the cabinet walls of household refrigerating appliances. Int J Refrig 2021;121:235‒42. 链接1

[87] Liu G, Yan G, Yu J. A review of refrigerator gasket: development trend, heat and mass transfer characteristics, structure and material optimization. Renew Sustain Energy Rev 2021;144:110975. 链接1

[88] Diaz-Londono C, Enescu D, Mazza A, Ruiz F. Characterization and flexibility of a thermoelectric refrigeration unit. In: 2019 54th International Universities Power Engineering Conference (UPEC); 2019 Sep 3‍‒‍6; Bucharest, Romania. New York: IEEE; 2019. 链接1

[89] Kremers E, González de Durana JM, Barambones O. Emergent synchronisation properties of a refrigerator demand side management system. Appl Energy 2013;101:709‒17. 链接1

[90] Diaz-Londono C, Enescu D, Ruiz F, Mazza A. Experimental modeling and aggregation strategy for thermoelectric refrigeration units as flexible loads. Appl Energy 2020;272:115065. 链接1

[91] Maiorino A, Del Duca MG, Mota-Babiloni A, Aprea C. Achieving a running cost saving with a cabinet refrigerator incorporating a phase change material by the scheduling optimisation of its cyclic operations. Int J Refrig 2020;‍117:237‒46. 链接1

[92] Sadeghianpourhamami N, Demeester T, Benoit DF, Strobbe M, Develder C. Modeling and analysis of residential flexibility: timing of white good usage. Appl Energy 2016;179:790‒805. 链接1

[93] Nistor S, Wu J, Sooriyabandara M, Ekanayake J. Capability of smart appliances to provide reserve services. Appl Energy 2015;138:590‒97. 链接1

[94] Marszal-Pomianowska A, Heiselberg P, Larsen OK. Household electricity demand profiles-A high-resolution load model to facilitate modelling of energy flexible buildings. Energy 2016;103:487‒501. 链接1

[95] McLoughlin F, Duffy A, Conlon M. Characterising domestic electricity consumption patterns by dwelling and occupant socio-economic variables: An Irish case study. Energy Build 2012;48:240‒8. 链接1

[96] Vellei M, Le Dréau J, Abdelouadoud SY. Predicting the demand flexibility of wet appliances at national level: The case of France. Energy Build 2020;214:109900. 链接1

[97] Ji Y, Rajagopal R. Demand and flexibility of residential appliances: an empirical analysis. In: 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP); 2017 Nov 14‒16; Montreal, QC, Canada. New York: IEEE; 2017. 链接1

[98] Vanthournout K, Dupont B, Foubert W, Stuckens C, Claessens S. An automated residential demand response pilot experiment, based on day-ahead dynamic pricing. Appl Energy 2015;155:195‒203. 链接1

[99] Klaassen E, Kobus C, Frunt J, Slootweg H. Load shifting potential of the washing machine and tumble dryer. In: 2016 IEEE International Energy Conference (ENERGYCON); 2016 Apr 4‍‒‍8; Leuven, Belgium. New York: IEEE; 2016. 链接1

[100] Klaassen EAM, Kobus CBA, Frunt J, Slootweg JG. Responsiveness of residential electricity demand to dynamic tariffs: Experiences from a large field test in the Netherlands. Appl Energy 2016;183:1065‒74. 链接1

[101] Staats MR, de Boer-Meulman PDM, van Sark WGJHM. Experimental determination of demand side management potential of wet appliances in the Netherlands. Sustain Energy. Grids Networks 2017;9:80‒94. 链接1

[102] Labeeuw WJ, Stragier GD, Deconinck G. Potential of active demand reduction with residential wet appliances: a case study for Belgium. IEEE Trans Smart Grid 2015;6(1):315‒23. 链接1

[103] Setlhaolo D, Xia X, Zhang J. Optimal scheduling of household appliances for demand response. Electr Power Syst Res 2014;116:24‒8. 链接1

[104] Finn P, O‍’‍Connell M, Fitzpatrick C. Demand side management of a domestic dishwasher: Wind energy gains, financial savings and peak-time load reduction. Appl Energy 2013;101:678‒85. 链接1

[105] Widén J. Improved photovoltaic self-consumption with appliance scheduling in 200 single-family buildings. Appl Energy 2014;126:199‒212. 链接1

[106] Gottwalt S, Ketter W, Block C, Collins J, Weinhardt C. Demand side management-A simulation of household behavior under variable prices. Energy Policy 2011;39(12):8163‒74. 链接1

[107] Kobus CBA, Klaassen EAM, Mugge R, Schoormans JPL. A real-life assessment on the effect of smart appliances for shifting households’ electricity demand. Appl Energy 2015;147:335‒43. 链接1

[108] Sou KC, Weimer J, Sandberg H, Johansson KH. Scheduling smart home appliances using mixed integer linear programming. In: 2011 IEEE Conference on Decision and Control and European Control Conference50th; 2011 Dec 12‒15; Orlando, FL, USA. New York: IEEE; 2011. 链接1

[109] Marszal-Pomianowska A, Widén J, Le Dréau J, Heiselberg P, Bak-Jensen B, de Cerio Mendaza ID. Operation of power distribution networks with new and flexible loads: a case of existing residential low voltage network. Energy 2020;202:117715. 链接1

[110] Lu Q, Zhang Z, Lü S. Home energy management in smart households: Optimal appliance scheduling model with photovoltaic energy storage system. Energy Rep 2020;6:2450‒62. 链接1

[111] Kakran S, Chanana S. Energy scheduling of residential community equipped with smart appliances and rooftop solar. In: 2017 7th International Conference on Power Systems (ICPS); 2017 Dec 21‍‒‍23; Pune, India. New York: IEEE; 2018. 链接1

[112] Nubbe VYM. Grid-interactive Efficient Buildings Technical Report Series: Lighting and Electronics[Internet]. Washington, D.C.: U.S. Department of Energy; 2019 Dec[cited 2021 May 5]. Available from: https://www1.‍eere.energy.gov/buildings/pdfs/75475.pdf. 链接1

[113] Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information. Energy Build 2008;40(3):394‒8. 链接1

[114] Bodart M, De Herde A. Global energy savings in offices buildings by the use of daylighting. Energy Build 2002;34(5):421‒9. 链接1

[115] Yu Z, Lu F, Zou Y, Yang X. Quantifying the flexibility of lighting systems by optimal control in commercial buildings: insight from a case study. Energy Build 2020;225:110310. 链接1

[116] Li DHW, Lam JC, Wong SL. Daylighting and its effects on peak load determination. Energy 2005;30(10):1817‒31. 链接1

[117] Sehar F, Pipattanasomporn M, Rahman S. An energy management model to study energy and peak power savings from PV and storage in demand responsive buildings. Appl Energy 2016;173:406‒17. 链接1

[118] Yang IH, Nam EJ. Economic analysis of the daylight-linked lighting control system in office buildings. Sol Energy 2010;84(8):1513‒25. 链接1

[119] Beccali M, Bellia L, Fragliasso F, Bonomolo M, Zizzo G, Spada G. Assessing the lighting systems flexibility for reducing and managing the power peaks in smart grids. Appl Energy 2020;268:114924. 链接1

[120] Harris C. Grid-interactive Efficient Buildings Technical Report Series: Windows and Opaque Envelope. https://www1.eere.energy.gov/buildings/pdfs/75387.pdf (accessed May 5, 2021).

[121] De Rosa M, Bianco V, Scarpa F, Tagliafico LA. Heating and cooling building energy demand evaluation; A simplified model and a modified degree days approach. Appl Energy 2014;128:217‒29. 链接1

[122] Taylor ZT, Gowri K, Katipamula S. GridLAB-D technical support document: residential End-Use module version 1.0. Report. Richland: Pacific Northwest National Lab; 2008. 链接1

[123] Hu M, Xiao F. Price-responsive model-based optimal demand response control of inverter air conditioners using genetic algorithm. Appl Energy 2018;219:151‒64. 链接1

[124] Wang H, Meng K, Luo F, Dong ZY, Verbič G, Xu Z, et al. Demand response through smart home energy management using thermal inertia. In: Australasian Universities Power Engineering Conference (AUPEC); 2013 Sep 29‍‒‍Oct 3; Hobart, Australia. New York: IEEE; 2014. 链接1

[125] Klein K, Herkel S, Henning HM, Felsmann C. Load shifting using the heating and cooling system of an office building: quantitative potential evaluation for different flexibility and storage options. Appl Energy 2017;203:917‒37. 链接1

[126] Stavrakas V, Flamos A. A modular high-resolution demand-side management model to quantify benefits of demand-flexibility in the residential sector. Energy Convers Manage 2020;205:112339. 链接1

[127] Dupont B, Vingerhoets P, Tant P, Vanthournout K, Cardinaels W, De Rybel T, et al. LINEAR breakthrough project: Large-scale implementation of smart grid technologies in distribution grids. In: 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe); 2012 Oct 14‒17; Berlin, Germany. New York: IEEE; 2012. 链接1

[128] Heinrich C, Ziras C, Syrri ALA, Bindner HW. EcoGrid 2.0: A large-scale field trial of a local flexibility market. Appl Energy 2020;261:114399. 链接1

[129] Xie D, Hui H, Ding Y, Lin Z. Operating reserve capacity evaluation of aggregated heterogeneous TCLs with price signals. Appl Energy 2018;‍216:338‒47. 链接1

[130] Hui H, Ding Y, Liu W, Lin Y, Song Y. Operating reserve evaluation of aggregated air conditioners. Appl Energy 2017;196:218‒28. 链接1

[131] Adhikari R, Pipattanasomporn M, Rahman S. An algorithm for optimal management of aggregated HVAC power demand using smart thermostats. Appl Energy 2018;217:166‒77. 链接1

[132] Che Y, Yang J, Zhou Y, Zhao Y, He W, Wu J. Demand response from the control of aggregated inverter air conditioners. IEEE Access 2019;7:88163‒73. 链接1

[133] Mahdavi N, Braslavsky JH. Modelling and control of ensembles of variable-speed air conditioning loads for demand response. IEEE Trans Smart Grid 2020;11(5):4249‒60. 链接1

[134] Liu Y, Liu W, Shen Y, Zhao X, Gao S. Toward smart energy user: real time non-intrusive load monitoring with simultaneous switching operations. Appl Energy 2021;287:116616. 链接1

[135] Qi N, Cheng L, Xu H, Wu K, Li X, Wang Y, et al. Smart meter data-driven evaluation of operational demand response potential of residential air conditioning loads. Appl Energy 2020;279:115708. 链接1

[136] El Geneidy R, Howard B. Contracted energy flexibility characteristics of communities: analysis of a control strategy for demand response. Appl Energy 2020;263:114600. 链接1

[137] Christantoni D, Flynn D, Finn DP. Modelling of a multi-purpose commercial building for demand response analysis. Energy Procedia 2015;78:2166‒171. 链接1

[138] Finck C, Li R, Zeiler W. Optimal control of demand flexibility under real-time pricing for heating systems in buildings: a real-life demonstration. Appl Energy 2020;263:114671. 链接1

[139] Zhou Y, Cao S, Kosonen R, Hamdy M. Multi-objective optimisation of an interactive buildings-vehicles energy sharing network with high energy flexibility using the Pareto archive NSGA-II algorithm. Energy Convers Manage 2020;218:113017. 链接1

[140] Zhang L, Good N, Mancarella P. Building-to-grid flexibility: modelling and assessment metrics for residential demand response from heat pump aggregations. Appl Energy 2019;233:709‒23. 链接1

[141] Bechtel S, Rafii-Tabrizi S, Scholzen F, Hadji-Minaglou JR, Maas S. Influence of thermal energy storage and heat pump parametrization for demand-side-management in a nearly-zero-energy-building using model predictive control. Energy Build 2020;226:110364. 链接1

相关研究