期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第22卷 第3期 doi: 10.1016/j.eng.2022.04.023

面向5G多波束MIMO系统应用的基于先进LTCC封装的39 GHz双信道收发机芯片组

a School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
b College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310058, China

收稿日期: 2021-11-09 修回日期: 2022-01-18 录用日期: 2022-04-17 发布日期: 2022-08-27

下一篇 上一篇

摘要

本文介绍了一种用于5G多输入多输出(MIMO)应用的39 GHz收发机前端芯片组。每个芯片包括两个可变增益变频信道,可以支持两个同时独立的波束。该芯片还集成了一个本地振荡器链和数字模块,用于多芯片的扩展和增益状态控制。为了提高射频性能,针对前端系统中的关键构建模块提出了几种电路级改进技术。此外,还开发了先进的低温共烧陶瓷工艺,用于封装39 GHz双信道收发机芯片组,实现了低封装损耗和两个发射(TX)/接收(RX)信道之间的高隔离。通过进行芯片级和系统封装(SIP)级的测量,展示了收发机芯片组的性能。测量特性表明,TX SIP 提供11 dB 的最大增益和10 dBm饱和输出功率,而RX SIP实现52 dB的最大增益,5.4 dB噪声系数和7.2 dBm输出1 dB压缩点。收发机的单信道通信链路测试显示,对于64 次正交幅度调制(QAM),误差矢量幅度(EVM)为3.72%,频谱效率为3.25 位⋅s−1⋅ Hz−1。对于1 m距离内的256-QAM 调制,EVM为3.76%,频谱效率为3.9 位⋅s−1⋅Hz−1。在该芯片组的基础上,还开发了39 GHz的多波束原型,用于执行5G毫米波应用的MIMO操作。用于单流和双流传输的空中通信链路表明,多波束原型可以覆盖5~150 m的距离,具有相当的吞吐量。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

图18

图19

图20

图21

图22

图23

图24

图25

参考文献

[ 1 ] Carlson EK. What will 5G bring? Engineering 2020;6(7):725‒7. 链接1

[ 2 ] Sadhu B, Tousi Y, Hallin J, Sahl S, Reynolds SK, Renstrȍm Ȍ, et al. A 28 GHz 32-element TRX phased-array IC with concurrent dual-polarized operation and orthogonal phase and gain control for 5G communications. IEEE J Solid State Circuits 2017;52(12):3373‒91. 链接1

[ 3 ] Kibaroglu K, Sayginer M, Rebeiz GM. A low-cost scalable 32-element 28 GHz phased array transceiver for 5G communication links based on a 2 × 2 beamformer flip-chip unit cell. IEEE J Solid State Circuits 2018;53(5):1260‒74. 链接1

[ 4 ] Chen CN, Lin YH, Hung LC, Tang TC, Chao WP, Chen CY, et al. 38 GHz phased array transmitter and receiver based on scalable phased array modules with endfire antenna arrays for 5GMMWdata links. IEEE Trans Microw Theory Tech 2021;69(1):980‒99. 链接1

[ 5 ] Yang B, Yu Z, Lan J, Zhang R, Zhou J, Hong W. Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications. IEEE Trans Microw Theory Tech 2018;66(7):3403‒18. 链接1

[ 6 ] Mondal S, Singh R, Hussein AI, Paramesh J. A 25‒30 GHz fully-connected hybrid beamforming receiver for MIMO communication. IEEE J Solid State Circuits 2018;53(5):1275‒87. 链接1

[ 7 ] Yeh YS, Floyd BA. Multibeam phased-arrays using dual-vector distributed beamforming: architecture overview and 28 GHz transceiver prototypes. IEEE Trans Circuits Syst I Regul Pap 2020;67(12):5496‒509. 链接1

[ 8 ] Vook FW, Ghosh A, Thomas TA. MIMO and beamforming solutions for 5G technology. In: Proceedings of IEEE MTT-S International Microwave Symposium (IMS2014); 2014 Jun 1‒6; Tampa, FL, USA; 2014. 链接1

[ 9 ] Ayach OE, Rajagopal S, Abu-Surra S, Pi Z, Heath RW. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans Wirel Commun 2014;13(3):1499‒513. 链接1

[10] Wang Y, Wu R, Pang J, You D, Fadila AA, Saengchan R, et al. A 39 GHz 64-element phased-array transceiver with built-in phase and amplitude calibrations for large-array 5G NR in 65-nm CMOS. IEEE J Solid State Circuits 2020;55(5):1249‒69. 链接1

[11] Pang J, Li Z, Kubozoe R, Luo X, Wu R, Wang Y, et al. A 28 GHz CMOS phased-array beamformer utilizing neutralized bi-directional technique supporting dual-polarized MIMO for 5G NR. IEEE J Solid State Circuits 2020;55(9):2371‒86. 链接1

[12] Yin Y, Ustundag B, Kibaroglu K, Sayginer M, Rebeiz GM. Wideband 23.5‒29.5 GHz phased arrays for multistandard 5G applications and carrier aggregation. IEEE Trans Microw Theory Tech 2021;69(1):235‒47. 链接1

[13] Dunworth J, Ku BH, Ou YC, Lu D, Mouat P, Homayoun A, et al. 28 GHz phased array transceiver in 28 nm bulk CMOS for 5G prototype user equipment and base stations. In: Proceedings of IEEE/MTT-S International Microwave Symposium—IMS; 2018 Jun 10‒15; Philadelphia, PA, USA;2018. 链接1

[14] Park H-C, Kang D, Lee SM, et al. A 39GHz-band CMOS 16-channel phased-array transceiver IC with a companion dual-stream IF transceiver IC for 5G NR base-station applications. In: Proceedings of IEEE/MTT-S International Microwave Symposium—IMS; 2018 Jun 10‒15; Philadelphia, PA, USA; 2018. 链接1

[15] Yu Y, Zhu J, Zong Z, Tang P, Liu H, Zhao C, et al. A 21-to-41 GHz high-gain low noise amplifier with triple-coupled technique for multiband wireless applications. IEEE Trans Circuits Syst II Express Briefs 2021;68(6):1857‒61. 链接1

[16] Bailleul PK. A new era in elemental digital beamforming for spaceborne communications phased arrays. Proc IEEE 2016;104(3):623‒32. 链接1

[17] Ma S, Wu T, Zhang J, Ren JA. 5G wireless event-driven sensor chip for online power-line disturbances detecting network in 0.25 lm GaAs process. IEEE Trans Ind Electron 2021;68(6):5271‒80. 链接1

[18] Zhu W, Wang J, Lv W, Zhang X, Liao B, Zhu Y, et al. A 24‒28 GHz power and area efficient 4-element phased-array transceiver front-end with 21.1%/16.6% transmitter peak/OP1dB PAE supporting 2.4 Gb/s in 256-QAM for 5G communications. In: Proceedings of IEEE Radio Frequency Integrated Circuits Symposium (RFIC); 2020 Aug 4‒6; Los Angeles, CA, USA; 2020. 链接1

[19] Yu C, Jing J, Shao H, Jiang ZH, Yan P, Zhu XW, et al. Full-angle digital predistortion of 5G millimeter-wave massive MIMO transmitters. IEEE Trans Microw Theory Tech 2019;67(7):2847‒60. 链接1

[20] Hong Z, Schonherr S, Chauhan V, Floyd B. Free-space phased-array characterization and calibration using code-modulated embedded test. In: Proceedings of IEEE MTT-S International Microwave Symposium (IMS); 2019 Jun 2‒7; Boston, MA, USA; 2019. 链接1

[21] Chan HC, Kuo YJ, Chen WY, Chang SF. A Ku-band CMOS build-in-self-test chip based on phasor-sum detection method for RF beamforming transceivers. In: Proceedings of IEEE MTT-S International Microwave Symposium (IMS); 2017 Jun 4‒9; Honololu, HI, USA; 2017. 链接1

[22] Chen D, Zhang X, Zhang L, Chen L, Sun S, Liu Y, et al. A Ku-band 8-element phased array transmitter with built-in-self-test capability. In: Proceedings of IEEE/MTT-S International Microwave Symposium—IMS; 2018 Jun 10‒15; Philadelphia, PA, USA; 2018. 链接1

[23] Sowlati T, Sarkar S, Perumana BG, Chan WL, Toda AP, Afshar B, et al. A 60 GHz 144-element phased-array transceiver for backhaul application. IEEE J Solid State Circuits 2018;53(12):3640‒59. 链接1

[24] Nafe A, Kibaroglu K, Sayginer M, Rebeiz GM. An insitu self-test and self-calibration technique utilizing antenna mutual coupling for 5G multi-beam TRX phased arrays. In: Proceedings of IEEE MTT-S International Microwave Symposium (IMS); 2910 Jun 2‒7; Boston, MA, USA; 2019. 链接1

[25] Mondal S, Paramesh J. A reconfigurable 28/37 GHz MMSE adaptive hybrid-beamforming receiver for carrier aggregation and multistandard MIMO communication. IEEE J Solid State Circuits 2019;54(5):1391‒406. 链接1

[26] Mondal SL, Carley R, Paramesh J. A 28/37 GHz scalable, reconfigurable multi-layer hybrid/digital MIMO transceiver for TDD/FDD and full-duplex communication. In: Proceedings of A 28/37scalableGHz, reconfigurable multi-layer hybrid/digital MIMO transceiver for TDD/FDD and full-duplex communication; 202 Feb 16‒20; San Francisco, CA, USA; 2020. 链接1

[27] Natarajan A, Valdes-Garcia A, Sadhu B, Reynolds SK, Parker BD. W-band dual-polarization phased-array transceiver front-end in SiGe BiCMOS. IEEE J Solid State Circuits 2015;63(6):1989‒2002. 链接1

[28] Aljuhani AH, Kanar T, Zihir S, Rebeiz GM. A scalable dual-polarized 256-element Ku-band phased-array SATCOM receiver with ±70° beam scanning. In: Proceedings of IEEE/MTT-S International Microwave Symposium—IMS; 2018 Jun 10‒15; Philadelphia, PA, USA; 2018. 链接1

[29] Roh W, Seol JY, Park J, Lee B, Lee J, Kim Y, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun Mag 2014;52(2):106‒13. 链接1

[30] Brady J, Hogan J, Sayeed A. Multi-beam MIMO prototype for real-time multiuser communication at 28 GHz. In: Proceedings of IEEE Globecom Workshops (GC Wkshps); 2016 Dec 4‒8; Washington, DC, USA; 2016. 链接1

[31] Duarte VC, Prata JG, Ribeiro C, Nogueira RN, Winzer G, Zimmermann L, et al. Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver. In: Proceedings of Optical Fiber Communication Conference; 2018 Mar 11‒15; San Diego, CA, USA; 2018. 链接1

[32] Huang MY, Chen YW, Shiu RK, Wang H, Chang GK. A bi-directional multi-band, multi-beam mm-wave beamformer for 5G fiber wireless access networks. J Lightwave Technol 2021;39(4):1116‒24. 链接1

[33] Binaie A, Ahasan S, Dascurcu A, Dastjerdi MB, Garg R, Johnson M, et al. A scalable 60 GHz 4-element MIMO transmitter with a frequency-domain-multiplexing single-wire interface and harmonic-rejection-based de-multiplexing. In: Proceedings of IEEE Radio Frequency Integrated Circuits Symposium (RFIC); 2020 Aug 4‒6; Los Angeles, CA, USA; 2020. 链接1

[34] Xu JX, Zhang XY. Single- and dual-band LTCC filtering switch with high isolation based on coupling control. IEEE Trans Ind Electron 2017;64(4):3137‒46. 链接1

[35] Zhang Y. Antenna-in-package (AiP) technology. Engineering 2022;11:18‒20. 链接1

[36] Kam DG, Liu D, Natarajan A, Reynolds S, Chen HC, Floyd BA. LTCC packages with embedded phased-array antennas for 60 GHz communications. IEEE Microw Wirel Compon Lett 2011;21(3):142‒4. 链接1

[37] Chen Z, Jiang Z, Liu Z, Cheng Y, Zhang L, Cheng D, et al. A 256-QAM 39 GHz dual-channel transceiver chipset with LTCC package for 5G communication in 65 nm CMOS. In: Proceedings of IEEE/MTT-S International Microwave Symposium—IMS; 2018 Jun 10‒15; Philadelphia, PA, USA; 2018. 链接1

[38] Chen P, Hong W, Kuai Z, Xu J, Wang H, Chen J, et al. A multibeam antenna based on substrate integrated waveguide technology for MIMO wireless communications. IEEE Trans Antennas Propag 2009;57(6):1813‒21. 链接1

[39] Cheng YJ, Hong W, Wu K, Kuai ZQ, Yu C, Chen JX, et al. Substrate integrated waveguide (SIW) Rotman lens and its Ka-band multibeam array antenna applications. IEEE Trans Antennas Propag 2008;56(8):2504‒13. 链接1

[40] Yu Y, Cao J, Zong Z, Tang P, Yi K, Zhao C, et al. A 68.5‒90 GHz high-gain power amplifier with capacitive stability enhancement technique in 0.13 lm SiGe BiCMOS. IEEE Trans Microw Theory Tech 2020;68(12):5359‒70.

[41] Razavi B. RF Microelectronics. 2nd ed. New Jersey: Prentice Hall Press; 2011.

[42] Wu R, Minami R, Tsukui Y, Kawai S, Seo Y, Sato S, et al. 64-QAM 60 GHz CMOS transceivers for IEEE 802.11ad/ay. IEEE J Solid State Circuits 2018;52(11):2871‒91. 链接1

[43] Chen Z, Liu H, Liu Z, Jiang Z, Yu Z, Wu Y, et al. A 62‒85 GHz high linearity up conversion mixer with 18 GHz IF bandwidth. IEEE Microw Compon Lett 2019;29(3):219‒21. 链接1

[44] Zhao C, Zeng X, Zhang L, Liu H, Yu Y, Wu Y, et al. A 37‒40 GHz low-phase imbalance CMOS attenuator with tail-capacitor compensation technique. IEEE Trans Circuits Syst I Regul Pap 2020;67(10):3400‒9. 链接1

[45] Yu Y, Liu H, Wu Y, Kang K. A 54.4‒90 GHz low-noise amplifier in 65 nm CMOS. IEEE J Solid State Circuits 2017;52(11):2892‒904. 链接1

[46] Zhang J, Liu H, Zhao C, Kang K. A 22.8-to-43.2 GHz tuning-less injection-locked frequency tripler using injection-current boosting with 76.4% locking range for multiband 5G applications. In: Proceedings of IEEE International Solid-State Circuits Conference—(ISSCC); 2018 Feb 11‒15; San Francisco, CA, USA;2018. 链接1

[47] Lee YC, Park CS. A fully embedded 60 GHz novel BPF for LTCC system-in-package applications. IEEE Trans Adv Packag 2006;29(4):804‒9. 链接1

[48] Li X, Chen Z, Sun S, Zhao C, Liu H, Wu Y, et al. A 39 GHz MIMO transceiver based on dynamic multi-beam architecture for 5G communication with 150 meter coverage. In: Proceedings of IEEE/MTT-S International Microwave Symposium—IMS; 2018 Jun 10‒15; Philadelphia, PA, USA; 2018. 链接1

[49] Johnson M, Dascuru A, Zhan K, Galioglu A, Adepu N, Jain S, et al. A 4-element 28 GHz millimeter-wave MIMO array with single-wire interface using code-domain multiplexing in 65 nm CMOS. In: Proceedings of IEEE Radio Frequency Integrated Circuits Symposium (RFIC); 2019 Jun 2‒4; Boston, MA, USA; 2019. 链接1

[50] Kibaroglu K, Sayginer M, Nafe A, Rebeiz GM. A dual-polarized dual-beam 28 GHz beamformer chip demonstrating a 24 Gbps 64-QAM 2 × 2 MIMO link. In: Proceedings of IEEE Radio Frequency Integrated Circuits Symposium (RFIC); 2018 Jun 10‒12; Philadelphia, PA, USA; 2018. 链接1

相关研究