期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第24卷 第5期 doi: 10.1016/j.eng.2022.06.010

基于磁驱动正交悬臂探针的三维原子力显微镜技术开发

The State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, China

收稿日期: 2021-11-29 修回日期: 2022-01-17 录用日期: 2022-06-05 发布日期: 2022-07-21

下一篇 上一篇

摘要

本文介绍了一种基于磁驱动正交悬臂探针(magnetically driven-orthogonal cantilever probes, MD-OCP)的三维原子力显微镜(three-dimensional atomic force microscopy, 3D-AFM)表征方法,该方法采用两个独立的三自由度纳米扫描器,能够实现探针沿可控矢量角度跟踪扫描样品表面。该3D-AFM系统还配备了高精度旋转台,可实现360°全向成像。定制的MD-OCP包含水平悬臂、垂直悬臂和磁珠三部分,其中磁珠可在磁场中机械驱动OCP实现激振。垂直悬臂具有一个突出的针尖,可检测深槽和具有悬垂/凹边特征的结构。本文首先对MD-OCP的设计、仿真、制造过程和性能分析结果进行了描述;然后,详细介绍了探针振幅补偿和360°旋转原点定位的方法。接着,使用标准AFM阶梯光栅进行对比实验,并结合三维形貌重建方法完成了图像整合,验证了所提出方法面向陡峭侧壁和拐角处细节的表征能力。通过对具有微梳结构的微机电系统(MEMS)器件进行3D表征,进一步证实了所提出的基于MD-OCP的3D-AFM技术的有效性。最后,该技术被用于确定微阵列芯片的关键尺寸(critical dimensions, CD)。实验结果表明,所提出的方法可以高精度地获取三维结构的CD信息,相比难以获得侧壁信息的二维技术,该方法在3D微纳制造检测领域具有更好的潜力。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

参考文献

[ 1 ] Ren Z, Chang Y, Ma Y, Shih K, Dong B, Lee C. Leveraging of MEMS technologies for optical metamaterials applications. Adv Opt Mater 2020;8(3):1900653. 链接1

[ 2 ] Osiander R, Darrin MAG, Champion JL. MEMS and microstructures in aerospace applications. Boca Raton: CRC Press; 2006.

[ 3 ] Leclerc J. MEMS for aerospace navigation. IEEE Aerosp Electron Syst Mag 2007;22(10):31‒6. 链接1

[ 4 ] Qiu Z, Piyawattanametha W. MEMS-based medical endomicroscopes. IEEE J Sel Top Quantum Electron 2015;21(4):376‒91. 链接1

[ 5 ] Polla DL, Erdman AG, Robbins WP, Markus DT, Diaz-Diaz J, Rizq R, et al. Microdevices in medicine. Annu Rev Biomed Eng 2000;2(1):551‒76. 链接1

[ 6 ] Cao X, Tan C, Sindoro M, Zhang H. Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chem Soc Rev 2017;46(10):2660‒77. 链接1

[ 7 ] Qiu L, Ouyang Y, Feng Y, Zhang X. Review on micro/nano phase change materials for solar thermal applications. Renew Energy 2019;140:513‒38. 链接1

[ 8 ] Siedlik MJ, Yang Z, Kadam PS, Eberwine J, Issadore D. Micro- and nano-devices for studying subcellular biology. Small 2021;17(3):2005793. 链接1

[ 9 ] Halder A, Sun Yi. Biocompatible propulsion for biomedical micro/nano robotics. Biosens Bioelectron 2019;139:111334. 链接1

[10] Kim SK. Effects of line-edge roughness on extreme ultraviolet lithography CDs and fin-field-effect-transistor performance for below 10-nm patterns. J Nanosci Nanotechnol 2017;17(11):8338‒43. 链接1

[11] Kim HW, Lee JY, Shin J, Woo SG, Cho HK, Moon JT. Experimental investigation of the impact of LWR on sub-100-nm device performance. IEEE Trans Electron Dev 2004;51(12):1984‒8. 链接1

[12] Bohn S, Sperlich K, Allgeier S, Bartschat A, Prakasam R, Reichert KM, et al. Cellular in vivo 3D imaging of the cornea by confocal laser scanning microscopy. Biomed Opt Express 2018;9(6):2511. 链接1

[13] Yin B, Piao Z, Nishimiya K, Hyun C, Gardecki JA, Mauskapf A, et al. 3D cellular-resolution imaging in arteries using few-mode interferometry. Light Sci Appl 2019;8(1):104. 链接1

[14] Zou YB, Khan MSS, Li HM, Li YG, Li W, Gao ST, et al. Use of model-based library in critical dimension measurement by CD-SEM. Measurement 2018;123:150‒62. 链接1

[15] Seo JH, Lee C, Lee B, Doi A, Yamauchi A, Bizen D, et al. Non-destructive depth measurement using SEM signal intensity. In: Proceedings of Metrology, Inspection, and Process Control for Semiconductor Manufacturing XXXV; 2021 Feb 22‒27; online. SPIE; 2021. p. 116112Q. 链接1

[16] Baumann FH, Popielarski B, Lu Y, Mitchell T. Extension of CD-TEM towards 3D elemental mapping. IEEE Trans Semicond Manuf 2020;33(3):346‒51. 链接1

[17] Moore SI, Ruppert MG, Yong YK. AFM cantilever design for multimode Q control: arbitrary placement of higher order modes. IEEE/ASME Trans Mechatron 2020;25(3):1389‒97. 链接1

[18] Wu Y, Fang Y, Wang C, Fan Z, Liu C. An optimized scanning-based AFM fast imaging method. IEEE/ASME Trans Mechatron 2020;25(2):535‒46. 链接1

[19] Braker RA, Luo Y, Pao LY, Andersson SB. Improving the image acquisition rate of an atomic force microscope through spatial subsampling and reconstruction. IEEE/ASME Trans Mechatron 2020;25(2):570‒80. 链接1

[20] Martin Y, Wickramasinghe HK. Method for imaging sidewalls by atomic force microscopy. Appl Phys Lett 1994;64(19):2498‒500. 链接1

[21] Murayama K, Gonda S, Koyanagi H, Terasawa T, Hosaka S. Critical-dimension measurement using multi-angle-scanning method in atomic force microscope. Jpn J Appl Phys 2006;45(7):5928‒32. 链接1

[22] Murayama K, Gonda S, Koyanagi H, Terasawa T, Hosaka S. Side-wall measurement using tilt-scanning method in atomic force microscope. Jpn J Appl Phys 2006;45(6B):5423‒8. 链接1

[23] Xie H, Hussain D, Yang F, Sun L. Atomic force microscope caliper for critical dimension measurements of micro and nanostructures through sidewall scanning. Ultramicroscopy 2015;158:8‒16. 链接1

[24] Xie H, Hussain D, Yang F, Sun L. Development of three-dimensional atomic force microscope for sidewall structures imaging with controllable scanning density. IEEE/ASME Trans Mechatron 2016;21(1):316‒28.

[25] Zavedeev EV, Jaeggi B, Zuercher J, Neuenschwander B, Zilova OS, Shupegin ML, et al. Effects of AFM tip wear on frictional images of laser-patterned diamond-like nanocomposite films. Wear 2018;416‒417:1‒5. 链接1

[26] Strahlendorff T, Dai G, Bergmann D, Tutsch R. Tip wear and tip breakage in high-speed atomic force microscopes. Ultramicroscopy 2019;201:28‒37. 链接1

[27] Shen J, Zhang D, Zhang FH, Gan Y. AFM characterization of patterned sapphire substrate with dense cone arrays: image artifacts and tip-cone convolution effect. Appl Surf Sci 2018;433:358‒66. 链接1

[28] Florin EL, Radmacher M, Fleck B, Gaub HE. Atomic force microscope with magnetic force modulation. Rev Sci Instrum 1994;65(3):639‒43. 链接1

[29] Jayanth GR, Jeong Y, Menq CH. Direct tip-position control using magnetic actuation for achieving fast scanning in tapping mode atomic force microscopy. Rev Sci Instrum 2006;77(5):053704. 链接1

[30] Meng X, Zhang H, Song J, Wen Y, Sun L, Xie H. Simultaneously measuring force and displacement: calibration of magnetic torque actuated microcantilevers for nanomechanical mapping. IEEE Sens J 2018;18(7):2682‒9. 链接1

[31] Meng X, Zhang H, Song J, Fan X, Sun L, Xie H. Publisher Correction: broad modulus range nanomechanical mapping by magnetic-drive soft probes. Nat Commun 2018;9:304. 链接1

[32] Xie H, Meng X, Zhang H, Sun L. Development of a magnetically driven microgripper for piconewton force-controlled microscale manipulation and characterization. IEEE Trans Ind Electron 2020;67(3):2065‒75. 链接1

[33] Habibullah H. 30 years of atomic force microscopy: creep, hysteresis, cross-coupling, and vibration problems of piezoelectric tube scanners. Measurement 2020;159:107776. 链接1

[34] Xie H, Wen Y, Shen X, Zhang H, Sun L. High-speed AFM imaging of nanopositioning stages using H∞ and iterative learning control. IEEE Trans Ind Electron 2020;67(3):2430‒9. 链接1

[35] Geng J, Zhang H, Meng X, Rong W, Xie H. Sidewall imaging of microarray-based biosensor using an orthogonal cantilever probe. IEEE Trans Instrum Meas 2021;70:1‒8. 链接1

[36] Xie H, Zhang H, Song J, Meng X, Wen Y, Sun L. High-precision automated micromanipulation and adhesive microbonding with cantilevered micropipette probes in the dynamic probing mode. IEEE/ASME Trans Mechatron 2018;23(3):1425‒35. 链接1

[37] Palacio MLB, Bhushan B. Normal and lateral force calibration techniques for AFM cantilevers. Crit Rev Solid State Mater Sci 2010;35(2):73‒104. 链接1

[38] Foucher J, Pikon A, Andes C, Thackeray J. Impact of acid diffusion length on resist LER and LWR measured by CD-AFM and CD-SEM. In: Proceedings of Metrology, Inspection, and Process Control for Microlithography XXI; 2007 Feb 25-Mar 2; San Jose, CA, USA. SPIE; 2007. p. 65181Q. 链接1

[39] Beltramo C, Riina MV, Colussi S, Campia V, Maniaci MG, Biolatti C, et al. Validation of a DNA biochip for species identification in food forensic science. Food Control 2017;78:366‒73. 链接1

[40] Wang LC, Huang D, Pu CE, Wang CH. Avian oncogenic virus differential diagnosis in chickens using oligonucleotide microarray. J Virol Methods 2014;210:45‒50. 链接1

[41] Song Y, Ye Y, Su SH, Stephens A, Cai T, Chung MT, et al. A digital protein microarray for COVID-19 cytokine storm monitoring. Lab Chip 2021;21(2):331‒43. 链接1

[42] Zong C, Venot A, Li X, Lu W, Xiao W, Wilkes JS, et al. Heparan sulfate microarray reveals that heparan sulfate-protein binding exhibits different ligand requirements. J Am Chem Soc 2017;139(28):9534‒43. 链接1

[43] Klein O, Kanter F, Kulbe H, Jank P, Denkert C, Nebrich G, et al. MALDI-imaging for classification of epithelial ovarian cancer histotypes from a tissue microarray using machine learning methods. Proteomics Clin Appl 2019;13(1):1700181. 链接1

[44] Coati I, Lotz G, Fanelli GN, Brignola S, Lanza C, Cappellesso R, et al. Claudin-18 expression in oesophagogastric adenocarcinomas: a tissue microarray study of 523 molecularly profiled cases. Br J Cancer 2019;121(3):257‒63. 链接1

[45] Vo-Dinh T. Biosensors and biochips. In: Ferrari M, Bashir R, Wereley S, editors. BioMEMS and biomedical nanotechnology. Boston: Springer; 2006. p. 1‒20. 链接1

[46] Mack CA. Reducing roughness in extreme ultraviolet lithography. J Micro/Nanolith MEMS MOEMS 2018;17(4):041006. 链接1

相关研究