期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第22卷 第3期 doi: 10.1016/j.eng.2022.06.026

基于语音识别的电磁调控智能超表面

a State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China

b Purple Mountain Laboratories, Nanjing 211111, China

c Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore

# These authors contributed equally to this work.

收稿日期: 2021-12-02 修回日期: 2022-04-17 录用日期: 2022-06-29 发布日期: 2023-01-20

下一篇 上一篇

摘要

本研究提出并实现了一种基于人类语音识别的智能超表面平台,用于对电磁波束进行可编程调控。该智能超表面平台由数字编码超表面、语音识别模块、单片机和数模转换器(DAC)电路组成,可根据预先存储的语音指令对电磁波进行智能控制。所构建的数字编码超表面包含6 × 6 个超级子单元,每个超级子单元由4 × 4 个嵌入了变容二极管的有源数字单元组成。语音识别模块配合DAC和单片机对语音指令进行识别,并生成对应的电压序列来控制超表面。此外,在超表面的设计过程中引入遗传算法,可有效优化超表面相位分布。为了验证智能超表面平台的性能,实验展示了雷达散射截面积缩减、涡旋波束生成和波束分裂三种典型功能。所提出的方案为调控电磁波提供了一种新途径,并在电磁和声学通信之间架起了一座桥梁。

图片

图1

图2

图3

图4

参考文献

[ 1 ] Chen HT, Taylor AJ, Yu N. A review of metasurfaces: physics and applications. Rep Prog Phys 2016;79(7):076401. 链接1

[ 2 ] Liu BH, Song CT. High gain transmitarray antenna based on ultra-thin metasurface. Int J RF Microw Comput-Aided Eng 2019;29(5):e21655. 链接1

[ 3 ] Liu L, Zhang X, Kenney M, Su X, Xu N, Ouyang C, et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mater 2014;26(29):5031‒6. 链接1

[ 4 ] Wong AMH, Eleftheriades GV. Perfect anomalous reflection with a bipartite Huygens’ metasurface. Phys Rev X 2018;8(1):011036. 链接1

[ 5 ] Sun SL, He Q, Hao JM, Xiao SY, Zhou L. Electromagnetic metasurfaces: physics and applications. Adv Opt Photonics 2019;11(2):380‒479. 链接1

[ 6 ] Chen K, Feng Y, Cui L, Zhao J, Jiang T, Zhu B. Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial. Sci Rep 2017;7(1):42802. 链接1

[ 7 ] Bai L, Zhang XG, Wang Q, Huang CX, Jiang WX, Cui TJ. Dual-band reconfigurable metasurface-assisted Fabry-Pérot antenna with high-gain radiation and low scattering. IET Microw Antennas Propag 2020;14(15):1933‒42. 链接1

[ 8 ] Li WH, Qiu TS, Wang JF, Zheng L, Jing Y, Jia YX, et al. Programmable coding metasurface reflector for reconfigurable multibeam antenna application. IEEE Trans Antenn Propag 2021;69(1):296‒301. 链接1

[ 9 ] Gao X, Yang WL, Ma HF, Cheng Q, Yu XH, Cui TJ. A reconfigurable broadband polarization converter based on an active metasurface. IEEE Trans Antenn Propag 2018;66(11):6086‒95. 链接1

[10] Zhu H, Deng M, Chen S, Chen L. Graphene-based meta-coupler for direction-controllable emission of surface plasmons. Opt Lett 2019;44(13):3382‒5. 链接1

[11] Ju Z, Deng M, Wang J, Chen L. Reconfigurable multifrequency and wide-angle directional beaming of light from a subwavelength metal slit with graphene metasurfaces. Opt Lett 2020;45(10):2882‒5. 链接1

[12] Mou N, Liu X, Wei T, Dong H, He Q, Zhou L, et al. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material. Nanoscale 2020;12(9):5374‒9. 链接1

[13] Huang YW, Lee HWH, Sokhoyan R, Pala RA, Thyagarajan K, Han S, et al. Gate-tunable conducting oxide metasurfaces. Nano Lett 2016;16(9):5319‒25. 链接1

[14] Cui TJ, Qi MQ, Wan X, Zhao J, Cheng Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl 2014;3(10):e218. 链接1

[15] Wan X, Xiao CK, Huang H, Xiao Q, Xu W, Wang JW, et al. User tracking and wireless digital transmission through a programmable metasurface. Adv Mater Technol 2021;6(7):2001254. 链接1

[16] Bao L, Ma Q, Wu RY, Fu X, Wu J, Cui TJ. Programmable reflection-transmission shared-aperture metasurface for real-time control of electromagnetic waves in full space. Adv Sci 2021;8(15):2100149. 链接1

[17] Zhang XG, Jiang WX, Jiang HL, Wang Q, Tian HW, Bai L, et al. An optically driven digital metasurface for programming electromagnetic functions. Nat Electron 2020;3(3):165‒71. 链接1

[18] Sun YL, Zhang XG, Yu Q, Jiang WX, Cui TJ. Infrared-controlled programmable metasurface. Sci Bull 2020;65(11):883‒8. 链接1

[19] Wu SR, Lai KL, Wang CM. Passive temperature control based on a phase change metasurface. Sci Rep 2018;8(1):7684. 链接1

[20] Mao M, Liang Y, Liang R, Zhao L, Xu N, Guo J, et al. Dynamically temperature-voltage controlled multifunctional device based on VO2 and graphene hybrid metamaterials: perfect absorber and highly efficient polarization converter. Nanomaterials 2019;9(8):1101. 链接1

[21] Yu Q, Zheng YN, Gu Z, Liu J, Liang YC, Li LZ, et al. Self-adaptive metasurface platform based on computer vision. Opt Lett 2021;46(15):3520‒3. 链接1

[22] Ma Q, Bai GD, Jing HB, Yang C, Li L, Cui TJ. Smart metasurface with self-adaptively reprogrammable functions. Light Sci Appl 2019;8(1):98. 链接1

[23] MA46H120 [Internet]. Lowell: MACOM; [cited 2020 Jun 21]. Available from: https://www.macom.com/products/product-detail/MA46H120. 链接1

[24] Liu X, Gao J, Xu LM, Cao XY, Zhao Y, Li SJ. A coding diffuse metasurface for RCS reduction. IEEE Antennas Wirel Propag Lett 2017;16:724‒7. 链接1

[25] Xu HX, Ma SJ, Ling XH, Zhang XK, Tang SW, Cai T, et al. Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces. ACS Photonics 2018;5(5):1691‒702. 链接1

[26] Moccia M, Liu S, Wu RY, Castaldi G, Andreone A, Cui TJ, et al. Coding metasurfaces for diffuse scattering: scaling laws, bounds, and suboptimal design. Adv Opt Mater 2017;5(19):1700455. 链接1

[27] Fu CF, Han LF, Liu C, Lu XL, Sun ZJ. Reflection-type 1-bit coding metasurface for radar cross section reduction combined diffusion and reflection. J Phys D Appl Phys 2020;53(44):445107. 链接1

[28] Liu BY, Li SR, He YJ, Li Y, Wong SW. Generation of an orbital-angular-momentum-mode-reconfigurable beam by a broadband 1-bit electronically reconfigurable transmitarray. Phys Rev Appl 2021;15(4):044035. 链接1

[29] Taher Al-Nuaimi MK, Hong W, Whittow WG. Nature-inspired orbital angular momentum beam generator using aperiodic metasurface. J Phys D Appl Phys 2021;54(27):275106. 链接1

[30] Xiao Q, Ma Q, Yan T, Wu LW, Liu C, Wang ZX, et al. Orbital-angular-momentum-encrypted holography based on coding information metasurface. Adv Opt Mater 2021;9(11):2002155. 链接1

[31] Shi H, Wang L, Peng G, Chen X, Li J, Zhu S, et al. Generation of multiple modes microwave vortex beams using active metasurface. IEEE Antennas Wirel Propag Lett 2019;18(1):59‒63. 链接1

相关研究