期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第18卷 第11期 doi: 10.1016/j.eng.2022.07.014

智能钻完井技术研究综述

State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China

收稿日期: 2021-12-14 修回日期: 2022-07-17 录用日期: 2022-07-26 发布日期: 2022-08-30

下一篇 上一篇

摘要

石油与天然气工程智能化已成为行业发展的必然趋势,其中智能钻完井技术可以大幅提高钻井效率和钻遇率,降低施工成本,被视为油气领域的一项变革性技术和前沿热点。机理-数据融合的智能建模、数字孪生等人工智能方法及其在油气钻完井工程领域的应用已取得广泛关注和关键进展,但是智能钻完井技术研究仍然处于初级阶段。在人工智能、大数据等前沿技术与油气钻完井工程深度融合的过程中,智能钻完井场景体系、多源多尺度数据治理、机理-数据混合驱动、模型可解释性、模型迁移性和不确定性建模等面临诸多挑战。为此,本文系统提出了钻完井人工智能应用场景体系,全面阐述了各场景下的智能技术及研究进展,深入探讨了智能钻完井技术未来发展的重点方向,为人工智能技术落地油气钻完井工程提供参考。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Boomer RJ. Predicting production using a neural network (artificial intelligence beats human intelligence). In: Proceedings of the Petroleum Computer Conference; 1995 Jun 11‒14; Houston, TX, USA. Richardson: OnePetro; 1995. 链接1

[ 2 ] Temizel C, Canbaz CH, Palabiyik Y, Putra D, Asena A, Ranjith R, et al. A comprehensive review of smart/intelligent oilfield technologies and applications in the oil and gas industry. In: Proceedings of the SPE Middle East Oil and Gas Show and Conference; 2019 Mar 18‒21; Manama, Bahrain. Richardson: OnePetro; 2019. 链接1

[ 3 ] Rommetveit R, Bjørkevoll KS, Ødegård SI, Herbert M, Halsey GW, Kluge R, et al. eDrilling used on ekofisk for real-time drilling supervision, simulation, 3D visualization and diagnosis. In: Proceedings of the Intelligent Energy Conference and Exhibition; 2008 Feb 25‍‒‍27; Amsterdam, the Netherlands. Richardson: OnePetro; 2008. 链接1

[ 4 ] Abughaban M, Alshaarawi A, Meng C, Ji G, Guo W. Optimization of drilling performance based on an intelligent drilling advisory system. In: Proceedings of the International Petroleum Technology Conference; 2019 Mar 26‒28; Beijing, China. Richardson: OnePetro; 2019. 链接1

[ 5 ] Akinsete O, Adesiji BA. Bottom-hole pressure estimation from wellhead data using artificial neural network. In: Proceedings of the SPE Nigeria Annual International Conference and Exhibition; 2019 Aug 5‍‒‍7; Lagos, Nigeria. Richardson: OnePetro; 2019. 链接1

[ 6 ] Gamal H, Elkatatny S, Abdulraheem A. Rock drillability intelligent prediction for a complex lithology using artificial neural network. In: Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference; 2020 Nov 9‒12; Abu Dhabi, UAE. Richardson: OnePetro; 2020. 链接1

[ 7 ] Asadi A, Abbasi A, Bagheri A. Application of artificial neural networks in estimation of drilling rate index using data of rock brittleness and mechanical properties. In: Proceedings of the ISRM 3rd Nordic Rock Mechanics Symposium—NRMS 2017; 2017 Oct 11‍‒‍12; Helsinki, Finland. Richardson: OnePetro; 2017.

[ 8 ] Li C, Cheng C. Prediction and optimization of rate of penetration using a hybrid artificial intelligence method based on an improved genetic algorithm and artificial neural network. In: Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference; 2020 Nov 9‍‒‍12; Abu Dhabi, UAE. Richardson: OnePetro; 2020. 链接1

[ 9 ] Asadi A. Pattern recognition applicability of artificial neural networks in rock abrasiveness determination using rock strength and brittleness data. In: Proceedings of the 51st US Rock Mechanics/Geomechanics Symposium; 2017 Jun 25‒28; San Francisco, CA, USA. Richardson: OnePetro; 2017.

[10] Sirdesai N, Aravind A, Singh A. Correlation of abrasivity and physicomechanical properties of rocks: an experimental, statistical and softcomputing analysis. In: Proceedings of the 5th ISRM Young Scholars’ Symposium on Rock Mechanics and International Symposium on Rock Engineering for Innovative Future; 2019 Dec 1‒4; Okinawa, Japan. Richardson: OnePetro; 2019.

[11] Kahraman S, Saygin E, Sarbangholi FS, Fener M. The evaluation of the abrasivity characteristics of igneous rocks. In: Proceedings of the ISRM International Symposium—10th Asian Rock Mechanics Symposium; 2018 Oct 29‒Nov 3; Singapore. Richardson: OnePetro; 2018.

[12] Lakhanpal V, Samuel R. Real-time bit wear prediction using adaptive data analytics. In: Proceedings of the SPE Annual Technical Conference and Exhibition; 2017 Oct 9‒11; San Antonio, TX, USA. Richardson: OnePetro; 2017. 链接1

[13] Zhekenov T, Nechaev A, Chettykbayeva K, Zinovyev A, Sardarov G, Tatur O, et al. Application of machine learning for lithology-on-bit prediction using drilling data in real-time. In: Proceedings of the SPE Russian Petroleum Technology Conference; 2021 Oct 12‒15; Virtual. Richardson: OnePetro; 2021. 链接1

[14] Batruny P, Zubir H, Slagel P, Yahya H, Zakaria Z, Ahmad A. Drilling in the digital age: machine learning assisted bit selection and optimization. In: Proceedings of the International Petroleum Technology Conference; 2021 Mar 23‒Apr 1; Virtual. Richardson: OnePetro; 2021. 链接1

[15] Abbas AK, Assi AH, Abbas H, Almubarak H, Saba MA. Drill bit selection optimization based on rate of penetration: application of artificial neural networks and genetic algorithms. In: Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference; 2019 Nov 11‍‒‍14; Abu Dhabi, UAE. Richardson: OnePetro; 2019. 链接1

[16] Tortrakul N, Pochan C, Southland S, Mala P, Pichaichanlert T, Tangsawanich Y. Drilling performance improvement through use of artificial intelligence in bit and bottom hole assembly selection in gulf of Thailand. In: Proceedings of the IADC/SPE Asia Pacific Drilling Technology Conference; 2021 Jun 8‍‒‍9; Virtual. Richardson: OnePetro; 2021. 链接1

[17] Okoro EE, Obomanu T, Sanni SE, Olatunji DI, Igbinedion P. Application of artificial intelligence in predicting the dynamics of bottom hole pressure for under-balanced drilling: extra tree compared with feed forward neural network model. Petroleum 2022;8(2):227‒36. 链接1

[18] Rashidi B, Hareland G, Tahmeen M, Anisimov M, Abdorazakov S. Real-time bit wear optimization using the intelligent drilling advisory system. In: Proceedings of the SPE Russian Oil and Gas Conference and Exhibition; 2010 Oct 26‒28; Moscow, Russia. Richardson: OnePetro; 2010. 链接1

[19] Gidh Y, Purwanto A, Bits S. Artificial neural network drilling parameter optimization system improves rop by predicting/managing bit wear. In: Proceedings of the SPE Intelligent Energy International; 2012 Mar 27‒29; Utrecht, the Netherlands. Richardson: OnePetro; 2012. 链接1

[20] Losoya ZE, Vishnumolakala N, Gildin E, Noynaert S, Medina-Cetina Z, Gabelmann J, et al. Machine learning based intelligent downhole drilling optimization system using an electromagnetic short hop bit dynamic measurements. In: Proceedings of the SPE Annual Technical Conference and Exhibition; 2020 Oct 26‒29; Virtual. Richardson: OnePetro; 2020. 链接1

[21] Liao X, Khandelwal M, Yang H, Koopialipoor M, Murlidhar BR. Effects of a proper feature selection on prediction and optimization of drilling rate using intelligent techniques. Eng Comput 2020;36(2):499‒510. 链接1

[22] Mehrad M, Bajolvand M, Ramezanzadeh A, Neycharan JG. Developing a new rigorous drilling rate prediction model using a machine learning technique. J Petrol Sci Eng 2020;192:107338. 链接1

[23] Gan C, Cao W, Wu M, Chen X, Hu YL, Liu KZ, et al. Prediction of drilling rate of penetration (ROP) using hybrid support vector regression: a case study on the Shennongjia area. Central China J Petrol Sci Eng 2019;181:106200. 链接1

[24] Anemangely M, Ramezanzadeh A, Tokhmechi B, Molaghab A, Mohammadian A. Drilling rate prediction from petrophysical logs and mud logging data using an optimized multilayer perceptron neural network. J Geophys Eng 2018;15(4):1146‒59. 链接1

[25] Abbas AK, Rushdi S, Alsaba M, Al Dushaishi MF. Drilling rate of penetration prediction of high-angled wells using artificial neural networks. J Energy Resour Technol 2019;141(11):112904. 链接1

[26] Hegde C, Daigle H, Millwater H, Gray K. Analysis of rate of penetration (ROP) prediction in drilling using physics-based and data-driven models. J Petrol Sci Eng 2017;159:295‒306. 链接1

[27] Han J, Sun Y, Zhang S. A Data driven approach of rop prediction and drilling performance estimation. In: Proceedings of the International Petroleum Technology Conference; 2019 Mar 26‍‒‍28; Beijing, China. Richardson: OnePetro; 2019. 链接1

[28] Sabah M, Talebkeikhah M, Wood DA, Khosravanian R, Anemangely M, Younesi A. A machine learning approach to predict drilling rate using petrophysical and mud logging data. Earth Sci Inform 2019;12 (3):319‒39. 链接1

[29] Soares C, Gray K. Real-time predictive capabilities of analytical and machine learning rate of penetration (ROP) models. J Petrol Sci Eng 2019;172:934‒59. 链接1

[30] Diaz MB, Kim KY, Kang TH, Shin HS. Drilling data from an enhanced geothermal project and its pre-processing for ROP forecasting improvement. Geothermics 2018;72:348‒57. 链接1

[31] Hegde C, Gray K. Evaluation of coupled machine learning models for drilling optimization. J Nat Gas Sci Eng 2018;56:397‒407. 链接1

[32] Arabjamaloei R, Shadizadeh S. Modeling and optimizing rate of penetration using intelligent systems in an iranian southern oil field (Ahwaz oil field). Petrol Sci Technol 2011;29(16):1637‒48. 链接1

[33] Bataee M, Mohseni S. Application of artificial intelligent systems in ROP optimization: a case study in Shadegan oil field. In: Proceedings of the SPE middle east unconventional gas conference and exhibition; 2011 Jan 31‒Feb 2; Muscat, Oman. Richardson: OnePetro; 2011. 链接1

[34] Gan C, Cao W, Wu M, Liu K, Chen X, Hu Y, et al. Two-level intelligent modeling method for the rate of penetration in complex geological drilling process. Appl Soft Comput 2019;80:592‒602. 链接1

[35] Oyedere M, Gray K. ROP and TOB optimization using machine learning classification algorithms. J Nat Gas Sci Eng 2020;77:103230. 链接1

[36] Hegde C, Millwater H, Pyrcz M, Daigle H, Gray K. Rate of penetration (ROP) optimization in drilling with vibration control. J Nat Gas Sci Eng 2019;67:71‒81. 链接1

[37] Momeni M, Hosseini S, Ridha S, Laruccia MB, Liu X. An optimum drill bit selection technique using artificial neural networks and genetic algorithms to increase the rate of penetration. J Eng Sci Technol 2018;13(2):361‒72.

[38] Jiang W, Samuel R. Optimization of rate of penetration in a convoluted drilling framework using ant colony optimization. In: Proceedings of the IADC/SPE Drilling Conference and Exhibition; 2016 Mar 1‍‒‍3; Fort Worth, TX, USA. Richardson: OnePetro; 2016. 链接1

[39] Zhang H, Ni H, Wang Z, Liu S, Liang H. Optimization and application study on targeted formation ROP enhancement with impact drilling modes based on clustering characteristics of logging. Energy Rep 2020;6:2903‒12. 链接1

[40] Moazzeni AR, Khamehchi E. Rain optimization algorithm (ROA): a new metaheuristic method for drilling optimization solutions. J Petrol Sci Eng 2020;195:107512. 链接1

[41] Wang H, Chen D, Ye Z, Li J. Intelligent planning of drilling trajectory based on computer vision. In: Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference; 2019 Nov 11‍‒‍14; Abu Dhabi, UAE. Richardson: OnePetro; 2019.

[42] Selveindran A, Wesley A, Chaudhari N, Pirela H. Smart custom well design based on automated offset well analysis. In: Proceedings of the SPE Annual Technical Conference and Exhibition; 2020 Oct 26‍‒‍29; Virtual. Richardson: OnePetro; 2020. 链接1

[43] Lee JW, Park C, Kang JM, Jeong CK. Horizontal well design incorporated with interwell interference, drilling location, and trajectory for the recovery optimization. In: Proceedings of the SPE/EAGE Reservoir Characterization and Simulation Conference; 2009 Oct 19‍‒‍21; Abu Dhabi, UAE. Richardson: OnePetro; 2009. 链接1

[44] Vlemmix S, Joosten GJP, Brouwer DR, Jansen JD. Adjoint-based well trajectory optimization. In: Proceedings of the EUROPEC/EAGE Conference and Exhibition; 2009 Jun 8‍‒‍11; Amsterdam, the Netherlands. Richardson: OnePetro; 2009. 链接1

[45] Zheng J, Lu C, Gao L. Multi-objective cellular particle swarm optimization for wellbore trajectory design. Appl Soft Comput 2019;77:106‒17. 链接1

[46] Mansouri V, Khosravanian R, Wood DA, Aadnoy BS. 3D well path design using a multi objective genetic algorithm. J Nat Gas Sci Eng 2015;27(Pt 1):219‒35. 链接1

[47] Wang Z, Gao D, Liu J. Multi-objective sidetracking horizontal well trajectory optimization in cluster wells based on DS algorithm. J Petrol Sci Eng 2016;147:771‒8. 链接1

[48] Zheng J, Li Z, Lu C. Wellbore trajectory design optimization using analytical target cascading. In: Proceedings of the 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design (CSCWD); 2018 May 9‒11; Nanjing, China. Berlin: IEEE; 2018. 链接1

[49] Liu Z, Samuel R. Wellbore-trajectory control by use of minimum well-profileenergy criterion for drilling automation. SPE J 2016;21(02):449‒58. 链接1

[50] Li Q, Tang Z. Optimization of wellbore trajectory using the initial collapse volume. J Nat Gas Sci Eng 2016;29:80‒8. 链接1

[51] Khosravanian R, Mansouri V, Wood DA, Alipour MR. A comparative study of several metaheuristic algorithms for optimizing complex 3D well-path designs. J Pet Explor Prod Te 2018;8(4):1487‒503. 链接1

[52] Vabø JG, Delaney ET, Savel T, Dolle N. Novel application of artificial intelligence with potential to transform well planning workflows on the Norwegian Continental Shelf. In: Proceedings of the SPE Annual Technical Conference and Exhibition; 2021 Sep 21‍‒‍23; Dubai, UAE. Richardson: OnePetro; 2021. 链接1

[53] Koryabkin V, Semenikhin A, Baybolov T, Gruzdev A, Simonov Y, Chebuniaev I, et al. Advanced data-driven model for drilling bit position and direction determination during well deepening. In: Proceedings of the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition; 2019 Oct 29‒31; Bali, Indonesia. Richardson: OnePetro; 2019. 链接1

[54] Tunkiel AT, Sui D, Wiktorski T. Training-while-drilling approach to inclination prediction in directional drilling utilizing recurrent neural networks. J Petrol Sci Eng 2021;196:108128. 链接1

[55] Noshi CI, Schubert JJ. Using supervised machine learning algorithms to predict BHA walk tendencies. In: Proceedings of the SPE Middle East Oil and Gas Show and Conference; 2019 Mar 18‍‒‍‍21; Manama, Bahrain. Richardson: OnePetro; 2019. 链接1

[56] Li J, Mang H, Sun T, Song Z, Gao D. Method for designing the optimal trajectory for drilling a horizontal well, based on particle swarm optimization (PSO) and analytic hierarchy process (AHP). Chem Technol Fuels Oils 2019;55(1):105‒15. 链接1

[57] Atashnezhad A, Wood DA, Fereidounpour A, Khosravanian R. Designing and optimizing deviated wellbore trajectories using novel particle swarm algorithms. J Nat Gas Sci Eng 2014;21:1184‒204. 链接1

[58] Sha L, Pan Z. FSQGA based 3D complexity wellbore trajectory optimization. Oil & Gas Sci Technol 2018;73:79 (1‒8).

[59] Xu J, Chen X. Bat algorithm optimizer for drilling trajectory designing under wellbore stability constraints. In: Proceedings of the 2018 37th Chinese Control Conference (CCC); 2018 Jul 25‒27; Wuhan, China. Berlin: IEEE; 2018. 链接1

[60] Halafawi M, Avram L. Wellbore trajectory optimization for horizontal wells: the plan versus the reality. J Oil Gas Petrochem Sci 2019;2(1):49‒54. 链接1

[61] Zalluhoglu U, Demirer N, Marck J, Gharib H, Darbe R. Steering advisory system for rotary steerable systems. In: Proceedings of the SPE/IADC International Drilling Conference and Exhibition; 2019 Mar 5‍‒‍7; Hague, the Netherlands. Richardson: OnePetro; 2019. 链接1

[62] Sugiura J, Bowler A, Hawkins R, Jones S, Hornblower P. Downhole steering automation and new survey measurement method significantly improves high-dogleg rotary steerable system performance. In: Proceedings of the SPE Annual Technical Conference and Exhibition; 2013 Sep 30‍‒‍Oct 2; New Orleans, LA, USA. Richardson: OnePetro; 2013. 链接1

[63] Zhang C, Zou W, Cheng N, Gao J. Trajectory tracking control for rotary steerable systems using interval type-2 fuzzy logic and reinforcement learning. J Franklin Inst 2018;355(2):803‒26. 链接1

[64] Song X, Vadali M, Xue Y, Dykstra JD. Tracking control of rotary steerable toolface in directional drilling. In: Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM); 2016 Jul 12‒15; Banff, Canada. Berlin: IEEE; 2016. 链接1

[65] Kullawan K, Bratvold RB, Nieto CM. Decision-oriented geosteering and the value of look-ahead information: a case-based study. SPE J 2017;22(03):767‒82. 链接1

[66] Kazei V, Titov A, Li W, Osypov K. Predicting density and velocity ahead of the bit with zero-offset VSP using deep learning. Society of exploration geophysicists; first international meeting for applied geoscience & energy, 2021. 链接1

[67] Rashidi M, Asadi A. An artificial intelligence approach in estimation of formation pore pressure by critical drilling data. In: Proceedings of the 52nd US Rock Mechanics/Geomechanics Symposium; Seattle, WA, USA. Richardson: OnePetro; 2018.

[68] Ahmed Abdelaal AA, Salaheldin Elkatatny SE, Abdulazeez Abdulraheem AA. Formation pressure prediction from mechanical and hydraulic drilling data using artificial neural networks. In: Proceedings of the 55th US Rock Mechanics/Geomechanics Symposium; 2021 Jun 18‍‒‍25; Virtual. Richardson: OnePetro; 2021. 链接1

[69] Vefring EH, Nygaard G, Lorentzen RJ, Nævdal G, Fjelde KK. Reservoir characterization during underbalanced drilling (UBD): methodology and active tests. SPE J 2006;11(02):181‒92. 链接1

[70] Zambrano E, Soriano V, Olascoaga C, Salehi S. Successful application of supervised machine learning algorithms for proper identification of abnormal pressure zones in the Talara Basin, Peru. In: Proceedings of the 55th US Rock Mechanics/Geomechanics Symposium; 2021 Jun 18‍‒‍25; Virtual. Richardson: OnePetro; 2021.

[71] Mylnikov D, Nazdrachev V, Korelskiy E, Petrakov Y, Sobolev A. Artificial neural network as a method for pore pressure prediction throughout the field. In: Proceedings of the SPE Russian Petroleum Technology Conference; 2021 Oct 12‒15; Virtual. Richardson: OnePetro; 2021. 链接1

[72] Booncharoen P, Rinsiri T, Paiboon P, Karnbanjob S, Ackagosol S, Chaiwan P, et al. Pore pressure estimation by using machine learning model. In: Proceedings of the International Petroleum Technology Conference; 2021 Mar 23‍‒‍Apr 1; Virtual. Richardson: OnePetro; 2021. 链接1

[73] Naeini EZ, Green S, Russell-Hughes I, Rauch-Davies M. An integrated deep learning solution for petrophysics, pore pressure, and geomechanics property prediction. Leading Edge 2019;38(1):53‒9. 链接1

[74] Liang H, Wei Q, Lu D, Li Z. Application of GA‒BP neural network algorithm in killing well control system. Neural Comput Appl 2021;33(3):949‒60. 链接1

[75] Al Shehri FH, Gryzlov A, Al Tayyar T, Arsalan M. Utilizing machine learning methods to estimate flowing bottom-hole pressure in unconventional gas condensate tight sand fractured wells in saudi arabia. In: Proceedings of the SPE Russian Petroleum Technology Conference; 2020 Oct 26‍‒‍29; Virtual. Richardson: OnePetro; 2020. 链接1

[76] Fruhwirth RK, Thonhauser G, Mathis W. Hybrid simulation using neural networks to predict drilling hydraulics in real time. In: Proceedings of the SPE Annual Technical Conference and Exhibition; 2006 Sep 24‒27; San Antonio, TX, USA. Richardson: OnePetro; 2006. 链接1

[77] Zhang H, Tan Y. Implement intelligent dynamic analysis of bottom-hole pressure with naive Bayesian models. Multimedia Tools Appl 2019;78(21):29805‒21. 链接1

[78] Li X, Miskimins JL, Hoffman BT. A combined bottom-hole pressure calculation procedure using multiphase correlations and artificial neural network models. In: Proceedings of the SPE Annual Technical Conference and Exhibition; 2014 Oct 27‍‒‍29; Amsterdam, the Netherlands. Richardson: OnePetro; 2014. 链接1

[79] Gola G, Nybø R, Sui D, Roverso D. Improving management and control of drilling operations with artificial intelligence. In: Proceedings of the SPE Intelligent Energy International; 2012 Mar 27‍‒‍29; Utrecht, the Netherlands. Richardson: OnePetro; 2012. 链接1

[80] Feili Monfared A, Ranjbar M, Nezamabadi-Poor H, Schaffie M, Ashena R. Development of a neural fuzzy system for advanced prediction of bottomhole circulating pressure in underbalanced drilling operations. Petrol Sci Technol 2011;29(21):2282‒92. 链接1

[81] Ashena R, Moghadasi J, Ghalambor A, Bataee M, Ashena R, Feghhi A. Neural networks in BHCP prediction performed much better than mechanistic models. In: Proceedings of the International Oil and Gas Conference and Exhibition in China; 2010 Jun 8‍‒‍10; Beijing, China. Richardson: OnePetro; 2010. 链接1

[82] AlSaihati A, Elkatatny S, Gamal H, Abdulraheem A. A statistical machine learning model to predict equivalent circulation density ecd while drilling, based on principal components analysis PCA. In: Proceedings of the SPE/IADC Middle East Drilling Technology Conference and Exhibition; 2021 May 25‒27; Abu Dhabi, UAE. Richardson: OnePetro; 2021. 链接1

[83] Alkinani HH, Al-Hameedi AT, Dunn-Norman S, Al-Alwani MA, Mutar RA, Al- Bazzaz WH. Data-driven neural network model to predict equivalent circulation density ECD. In: Proceedings of the SPE Gas & Oil Technology Showcase and Conference; 2019 Oct 21‒23; Dubai, UAE. Richardson: OnePetro; 2019. 链接1

[84] Han C, Guan Z, Li J, et al. Equivalent circulating density prediction using a hybrid ARIMA and BP neural network model. In: Proceedings of the the Abu Dhabi International Petroleum Exhibition & Conference; 2019 Nov; Abu Dhabi, UAE. Richardson: OnePetro; 2019. 链接1

[85] Elzenary M, Elkatatny S, Abdelgawad KZ, Abdulraheem A, Mahmoud M, Al- Shehri D. New technology to evaluate equivalent circulating density while drilling using artificial intelligence. In: Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition; 2018 Apr 23‒26; Dammam, Saudi Arabia. Richardson: OnePetro; 2018. 链接1

[86] Jahanbakhshi R, Keshavarzi R, Jahanbakhshi R. Intelligent prediction of wellbore stability in oil and gas wells: an artificial neural network approach. In: Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium; 2012 Jun 24‒27; Chicago, IL, USA. Richardson: OnePetro; 2012. 链接1

[87] Okpo EE, Dosunmu A, Odagme BS. Artificial neural network model for predicting wellbore instability. In: Proceedings of the SPE Nigeria Annual International Conference and Exhibition; 2016 Aug 2‍‒‍4; Lagos, Nigeria. Richardson: OnePetro; 2016. 链接1

[88] Lin A, Alali M, Almasmoom S, Samuel R. Wellbore instability prediction using adaptive analytics and empirical mode decomposition. In: Proceedings of the IADC/SPE Drilling Conference and Exhibition; 2018 Mar 6‒8; Fort Worth, TX, USA. Richardson: OnePetro; 2018. 链接1

[89] Tewari S. Assessment of data-driven ensemble methods for conserving wellbore stability in deviated wells. In: Proceedings of the SPE Annual Technical Conference and Exhibition; 2019 Sep 30‒Oct 2; Calgary, Canada. Richardson: OnePetro; 2019. 链接1

[90] Mohan R, Hussein A, Mawlod A, Al Jaberi B,Vesselinov V, Salam FA, et al. Data driven and AI methods to enhance collaborative well planning and drilling risk prediction. In: Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference; 2020 Nov 9‍‒‍12; Abu Dhabi, UAE. Richardson: OnePetro; 2020. 链接1

[91] Li H, Wei N, Liu A, Sun W, Jiang L, Liu Y, et al. Intelligent judgment of risks while gas drilling. In: Proceedings of the International Field Exploration and Development Conference. 2018. Singapore: Springer Singapore.

[92] Yin Q, Yang J, Tyagi M, Zhou X, Hou X, Cao B. Field data analysis and risk assessment of gas kick during industrial deepwater drilling process based on supervised learning algorithm. Process Saf Environ 2021;146:312‒28. 链接1

[93] Sule I, Imtiaz S, Khan F, Butt S. Risk analysis of well blowout scenarios during managed pressure drilling operation. J Petrol Sci Eng 2019;182:106296. 链接1

[94] Yin Q, Yang J, Tyagi M, Zhou X, Wang N, Tong G, et al. Downhole quantitative evaluation of gas kick during deepwater drilling with deep learning using pilot-scale rig data. J Petrol Sci Eng 2022;208(Pt A):109136. 链接1

[95] Yin Q, Yang J, Liu S, Sun T, Li W, Li L, et al. Intelligent method of identifying drilling risk in complex formations based on drilled wells data. In: Proceedings of the SPE Intelligent Oil and Gas Symposium; 2017 May 9‒10; Abu Dhabi, UAE. Richardson: OnePetro; 2017. 链接1

[96] Muojeke S, Venkatesan R, Khan F. Supervised data-driven approach to early kick detection during drilling operation. J Petrol Sci Eng 2020;192:107324. 链接1

[97] Liang H, Zou J, Li Z, Khan MJ, Lu Y. Dynamic evaluation of drilling leakage risk based on fuzzy theory and PSO‒SVR algorithm. Future Gener Comp Sy 2019;95:454‒66. 链接1

[98] Pang H, Meng H, Wang H, Fan Y, Nie Z, Jin Y. Lost circulation prediction based on machine learning. J Petrol Sci Eng 2022;208(Pt A):109364. 链接1

[99] Li Z, Chen M, Jin Y, Lu Y, Wang H, Geng Z, et al. Study on intelligent prediction for risk level of lost circulation while drilling based on machine learning. In: Proceedings of the 52nd US Rock Mechanics/Geomechanics Symposium; Seattle, WA, USA. Richardson: OnePetro; 2018.

[100] Hou X, Yang J, Yin Q, Liu H, Chen H, Zheng J, et al. Lost circulation prediction in south China sea using machine learning and big data technology. In: Proceedings of the Offshore Technology Conference; 2020 May 4‍‒‍7; Houston, TX, USA. Richardson: OnePetro; 2020. 链接1

[101] Alkinani HH, Al-Hameedi AT, Dunn-Norman S. Predicting the risk of lost circulation using support vector machine model. In: Proceedings of the 54th US Rock Mechanics/Geomechanics Symposium; 2020 Jun 28‍‒‍Jul 1; physical event cancelled. Richardson: OnePetro; 2020. 链接1

[102] Shi X, Zhou Y, Zhao Q, Jiang H, Zhao L, Liu Y, et al. A new method to detect influx and loss during drilling based on machine learning. In: Proceedings of the International Petroleum Technology Conference; 2019 Mar 26‒28; Beijing, China. Richardson: OnePetro; 2019. 链接1

[103] Mopuri KR, Bilen H, Tsuchihashi N, Wada R, Inoue T, Kusanagi K, et al. Early sign detection for the stuck pipe scenarios using unsupervised deep learning. J Petrol Sci Eng 2022;208:109489. 链接1

[104] Al Dushaishi MF, Abbas AK, Alsaba M, Abbas H, Dawood J. Data-driven stuck pipe prediction and remedies. Upstream Oil Gas Technol 2021;6:100024. 链接1

[105] Siahaan HB, Jin H, Safonov MG. An adaptive pid switching controller for pressure regulation in drilling. IFAC Proceedings Volumes 2012;45(8):90‒4. 链接1

[106] Zhou J, Krstic M. Adaptive predictor control for stabilizing pressure in a managed pressure drilling system under time-delay. J Process Contr 2016;40:106‒18. 链接1

[107] Yin H, Liu P, Li Q, Wang Q, Gao D. A new approach to risk control of gas kick in high-pressure sour gas wells. J Nat Gas Sci Eng 2015;26:142‒8. 链接1

[108] Pedersen T, Godhavn JM. Model predictive control of flow and pressure in underbalanced drilling. IFAC Proceedings Volumes 2013;46(32):307‒12. 链接1

[109] Li Z, Hovakimyan N, Kaasa GO. Bottomhole pressure estimation and L1 adaptive control in managed pressure drilling system. IFAC Proceedings Volumes 2012;45(8):128‒33. 链接1

[110] Nandan A, Imtiaz S. Nonlinear model predictive controller for kick attenuation in managed pressure drilling. IFAC-PapersOnLine 2016;49 (7):248‒53. 链接1

[111] Nandan A, Imtiaz S, Butt S. Robust gain switching control of constant bottomhole pressure drilling. J Process Contr 2017;57:38‒49. 链接1

[112] Sule I, Imtiaz S, Khan F, Butt S. Nonlinear model predictive control of gas kick in a managed pressure drilling system. J Petrol Sci Eng 2019;174:1223‒35. 链接1

[113] Voleti DK, Reddicharla N, Guntupalli S, Reddy R, Vanam RE, Khanji MS, et al. Smart way for consistent cement bond evaluation and reducing human bias using machine learning. In: Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference; 2020 Nov 9‒12; Abu Dhabi, UAE. Richardson: OnePetro; 2020. 链接1

[114] Santos L, Dahi Taleghani A. Machine learning framework to generate synthetic cement evaluation logs for wellbore integrity analysis. In: Proceedings of the 55th US Rock Mechanics/Geomechanics Symposium; 2021 Jun 18‒25; Virtual. Richardson: OnePetro; 2021. 链接1

[115] Reolon D, Maggio FD, Moriggi S, Galli G, Pirrone M, Unlocking data analytics for the automatic evaluation of cement bond scenarios. In: Proceedings of the SPWLA 61st Annual Logging Symposium; 2020 Jun 24‒Jul 29; Virtual. Richardson: OnePetro; 2020. 链接1

[116] Viggen EM, Merciu IA, Løvstakken L, Måsøy SE. Automatic interpretation of cement evaluation logs from cased boreholes using supervised deep neural networks. J Petrol Sci Eng 2020;195:107539. 链接1

[117] Viggen EM, Løvstakken L, Måsøy SE, Merciu IA. Better automatic interpretation of cement evaluation logs through feature engineering. SPE J 2021;26(05):2894‒913. 链接1

[118] Tran NL, Gupta I, Devegowda D, Jayaram V, Karami H, Rai C, et al. Application of interpretable machine-learning workflows to identify brittle, fracturable, and producible rock in horizontal wells using surface drilling data. SPE Reservoir Eval Eng 2020;23(04):1328‒42. 链接1

[119] Palmer CE. Using AI and machine learning to indicate shale anisotropy and assist in completions design [dissertation]. Morgan City: West Virginia University; 2020.

[120] Xu S, Feng Q, Wang S, Javadpour F, Li Y. Optimization of multistage fractured horizontal well in tight oil based on embedded discrete fracture model. Comput Chem Eng 2018;117:291‒308. 链接1

[121] Dalamarinis P, Mueller P, Logan D, Glascock J, Broll S. Real-time hydraulic fracture optimization based on the integration of fracture diagnostics and reservoir geomechanics. In: Proceedings of the Unconventional Resources Technology Conference; 2020 Jul 20‒22; Virtual. Richardson: OnePetro; 2020. 链接1

[122] Rahmanifard H, Plaksina T. Application of fast analytical approach and AI optimization techniques to hydraulic fracture stage placement in shale gas reservoirs. J Nat Gas Sci Eng 2018;52:367‒78. 链接1

[123] Gong Y, Mehana M, Xiong F, Xu F, El-Monier I. Towards better estimations of rock mechanical properties integrating machine learning techniques for application to hydraulic fracturing. In: Proceedings of the SPE Annual Technical Conference and Exhibition; 2019 Sep 30‒Oct 2; Calgary, Canada. Richardson: OnePetro; 2019. 链接1

[124] Ramirez A, Iriarte J. Event recognition on time series frac data using machine learning—Part II. In: Proceedings of the SPE Liquids-Rich Basins Conference—North America; 2019 Nov 7‒8; Odessa, TX, USA. Richardson: OnePetro; 2019. 链接1

[125] Shen Y, Cao D, Ruddy K, de Moraes LFT. Near real-time hydraulic fracturing event recognition using deep learning methods. SPE Drill Complet 2020;35(3):478‒89. 链接1

[126] Ben Y, Perrotte M, Ezzatabadipour M, Ali I, Sankaran S, Harlin C, et al. Realtime hydraulic fracturing pressure prediction with machine learning. In: Proceedings of the SPE Hydraulic Fracturing Technology Conference and Exhibition; 2020 Feb 4‒6; the Woodlands, TX, USA. Richardson: OnePetro; 2020. 链接1

[127] Maučec M, Singh AP, Bhattacharya S, Yarus JM, Fulton DD, Orth JM. Multivariate analysis and data mining of well-stimulation data by use of classification-and-regression tree with enhanced interpretation and prediction capabilities. SPE Econ Manage 2015;7(02):60‒71. 链接1

[128] Sun JJ, Battula A, Hruby B, Hossaini P. Application of both physics-based and data-driven techniques for real-time screen-out prediction with high frequency data. In: Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference; 2020 Jul 20‒22; Virtual. Richardson: OnePetro; 2020. 链接1

[129] Yu X, Trainor-Guitton W, Miskimins J. A data driven approach in screenout detection for horizontal wells. In: Proceedings of the SPE Hydraulic Fracturing Technology Conference and Exhibition; 2020 Feb 4‒6; the Woodlands, TX, USA. Richardson: OnePetro; 2020. 链接1

[130] Hu J, Khan F, Zhang L, Tian S. Data-driven early warning model for screenout scenarios in shale gas fracturing operation. Comput Chem Eng 2020;143:107116. 链接1

[131] Pankaj P, Geetan S, MacDonald R, Shukla P, Sharma A, Menasria S, et al. Application of data science and machine learning for well completion optimization. In: Proceedings of the Offshore Technology Conference; 2018 Apr 30‒May 3; Houston, TX, USA. Richardson: OnePetro; 2018. 链接1

[132] Bhattacharya S, Ghahfarokhi PK, Carr TR, Pantaleone S. Application of predictive data analytics to model daily hydrocarbon production using petrophysical, geomechanical, fiber-optic, completions, and surface data: a case study from the Marcellus Shale, North America. J Petrol Sci Eng 2019;176:702‒15. 链接1

[133] Liu K, Xu B, Kim C, Fu J. Well Performance from numerical methods to machine learning approach: applications in multiple fractured shale reservoirs. Geofluids 2021;2021:3169456. 链接1

[134] Duplyakov V, Morozov A, Popkov D, Vainshtein A, Osiptsov A, Burnaev E, et al. Practical aspects of hydraulic fracturing design optimization using machine learning on field data: digital database, algorithms and planning the field tests. In: Proceedings of the SPE Symposium: Hydraulic Fracturing in Russia. Experience and Prospects; 2020 Sep 22‒24; Virtual. Richardson: OnePetro; 2020. 链接1

[135] Ma Z, Davani E, Ma X, Lee H, Arslan I, Zhai X, et al. Unlocking completion design optimization using an augmented ai approach. In: Proceedings of the SPE Canada Unconventional Resources Conference; 2020 Sep 28‒Oct 2; Virtual. Richardson: OnePetro; 2020. 链接1

[136] Klie H. Physics-based and data-driven surrogates for production forecasting. In: Proceedings of the SPE Reservoir Simulation Symposium; 2015 Feb 23‒25; Houston, TX, USA. Richardson: OnePetro; 2015. 链接1

[137] Tariq Z, Abdulraheem A, Khan MR, Sadeed A. New inflow performance relationship for a horizontal well in a naturally fractured solution gas drive reservoirs using artificial intelligence technique. In: Proceedings of the Offshore Technology Conference Asia; 2018 Mar 20‒23; Kuala Lumpur, Malaysia. Richardson: OnePetro; 2018. 链接1

[138] Prosvirnov M, Kovalevich A, Oftedal G, Andersen CA. Dynamic reservoir characterization and production optimization by integrating intelligent inflow tracers and pressure transient analysis in a long horizontal well for the ekofisk field, Norwegian Continental Shelf. In: Proceedings of the SPE Bergen One Day Seminar; 2016 Apr 20; Grieghallen, Norway. Richardson: OnePetro; 2016. 链接1

[139] Chaplygin D, Azamatov M, Khamadaliev D, Yashnev V, Novikov I, Drobot A, et al. The use of novel technology of inflow chemical tracers in continuous production surveillance of horizontal wells. In: Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference; 2020 Nov 9‒12; Abu Dhabi, UAE. Richardson: OnePetro; 2020. 链接1

[140] Khamehchi E, Rahimzadeh IK, Akbari M. A novel approach to sand production prediction using artificial intelligence. J Petrol Sci Eng 2014;123:147‒54. 链接1

[141] Aljubran MJ, Horne R. Surrogate-based prediction and optimization of multilateral inflow control valve flow performance with production data. SPE Prod Oper 2021;36(01):224‒33. 链接1

[142] Bello O, Yang D, Lazarus S, Wang XS, Denney T. Next generation downhole big data platform for dynamic data-driven well and reservoir management. In: Proceedings of the SPE Reservoir Characterisation and Simulation Conference and Exhibition; 2017 May 8‒10; Abu Dhabi, UAE. Richardson: OnePetro; 2017. 链接1

[143] Solovyev T, Mikhaylov N. From completion design to efficiency analysis of inflow control device: comprehensive approach for AICD implementation for thin oil rim field development efficiency improvement. In: Proceedings of the SPE Russian Petroleum Technology Conference; 2021 Oct 12‒15; Virtual. Richardson: OnePetro; 2021. 链接1

[144] Goh G, Tan T, Zhang LM. A unique ICD’s advance completions design solution with single well dynamic modeling. In: Proceedings of the IADC/SPE Asia Pacific Drilling Technology Conference; 2016 Aug 22‒24; Singapore. Richardson: OnePetro; 2016. 链接1

[145] Shishavan RA, Hubbell C, Perez H, Hedengren J, Pixton D. Combined rate of penetration and pressure regulation for drilling optimization by use of highspeed telemetry. SPE Drill Complet 2015;30(1):17‒26. 链接1

[146] Ambrus A, Daireaux B, Carlsen LA, Mihai RG, Balov MK, Bergerud R. Statistical determination of bit-rock interaction and drill string mechanics for automatic drilling optimization. In: Proceedings of the ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering; 2020 Aug 3‒7; Virtual. New York: ASME; 2020. 链接1

[147] Zhou Y, Chen X, Wu M, Cao W. Modeling and coordinated optimization method featuring coupling relationship among subsystems for improving safety and efficiency of drilling process. Appl Soft Comput 2021;99:106899. 链接1

[148] Cayeux E, Mihai R, Carlsen L, Stokka S. An approach to autonomous drilling. In: Proceedings of the IADC/SPE International Drilling Conference and Exhibition; 2020 Mar 3‒5; Galveston, TX, USA. Richardson: OnePetro; 2020. 链接1

[149] Cayeux E, Daireaux B, Ambrus A, Mihai R, Carlsen L. Autonomous decisionmaking while drilling. Energies 2021;14(4):969. 链接1

[150] Daireaux B, Ambrus A, Carlsen LA, Mihai R, Gjerstad K, Balov M. Development, testing and validation of an adaptive drilling optimization system. In: Proceedings of the SPE/IADC International Drilling Conference and Exhibition; 2021 Mar 8‒12; Virtual. Richardson: OnePetro; 2021. 链接1

[151] Losoya EZ, Gildin E, Noynaert SF, Medina-Zetina Z, Crain T, Stewart S, et al. An open-source enabled drilling simulation consortium for academic and commercial applications. In: Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference; 2020 Jul 27‍‒‍31; Virtual. Richardson: OnePetro; 2020. 链接1

[152] Kelessidis VC, Ahmed S, Koulidis A. An improved drilling simulator for operations, research and training. In: Proceedings of the SPE Middle East Oil & Gas Show and Conference; 2015 Mar 8‒11; Manama, Bahrain. Richardson: OnePetro; 2015. 链接1

[153] Loeken EA, Trulsen A, Holsaeter AM, Wiktorski E, Sui D, Ewald R. Design principles behind the construction of an autonomous laboratory-scale drilling rig. IFAC-PapersOnLine 2018;51(8):62‒9. 链接1

[154] Khadisov M, Hagen H, Jakobsen A, Sui D. Developments and experimental tests on a laboratory-scale drilling automation system. J Pet Explor Prod Technol 2020;10(2):605‒21. 链接1

[155] Løken EA, Løkkevik J, Sui D. Testing machine learning algorithms for drilling incidents detection on a pilot small-scale drilling rig. J Energy Resour Technol 2021;143(12):124501. 链接1

[156] Mayani MG, Rommetveit R, Ødegaard SI, Svendsen M. Drilling automated realtime monitoring using digital twin. In: Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference; 2018 Nov 12‒15; Abu Dhabi, UAE. Richardson: OnePetro; 2018. 链接1

[157] Mayani MG, Baybolov T, Rommetveit R, Ødegaard SI, Koryabkin V, Lakhtionov S. Optimizing drilling wells and increasing the operation efficiency using digital twin technology. In: Proceedings of the IADC/SPE International Drilling Conference and Exhibition; 2020 Mar 35; Galveston, TX, USA. Richardson: OnePetro; 2020. 链接1

[158] Wanasinghe TR, Wroblewski L, Petersen BK, Gosine RG, James LA, De Silva O, et al. Digital twin for the oil and gas industry: overview, research trends, opportunities, and challenges. IEEE Access 2020;8: 104175‒97. 链接1

[159] Rommetveit R, Bjørkevoll KS, Halsey GW, Fjær E, Ødegård SI, Herbert M, et al. e-drilling: a system for real-time drilling simulation, 3D visualization and control. In: Proceedings of the Digital Energy Conference and Exhibition; 2007 Apr 11‒12; Houston, TX, USA. Richardson: OnePetro; 2007. 链接1

[160] Pivano L, Nguyen DT, Ludvigsen BK. Digital twin for drilling operations— towards cloud-based operational planning. In: Proceedings of the Offshore Technology Conference; 2019 May 6‍‒‍9; Houston, TX, USA. Richardson: OnePetro; 2019. 链接1

相关研究