期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第22卷 第3期 doi: 10.1016/j.eng.2022.07.018

基于变形力监测数据的残余应力场推断和表征方法

a College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
b School of Engineering, University of Greenwich, Chatham Maritime ME4 4TB, UK

# These authors contributed equally to this work.

收稿日期: 2022-03-10 修回日期: 2022-05-04 录用日期: 2022-07-04 发布日期: 2022-10-14

下一篇 上一篇

摘要

残余应力是材料的基本属性之一,与零件的几何/尺寸稳定性和疲劳寿命直接相关。针对具有高精度要求的大型零件,其残余应力场的准确测量和预测一直是一个挑战。目前的残余应力场测量技术分为基于应变的有损法以及效率和精度较低的无损法。本文提出了一种基于变形力推断残余应力场的无损法。本方法通过能够反映去除材料后不平衡残余应力场整体效应的变形力来推断零件的残余应力场。利用虚功原理建立了变形力与残余应力场之间的力学关系,并引入正则化方法求解残余应力场。为验证方法的有效性,本文进行了理论验证和实际实验验证。实验结果表明,该方法对于大型结构件的残余应力场测量具有可靠的精度和灵活性。在数字化和智能制造的趋势下,该方法的基本原理为利用加工监测数据预测和补偿由残余应力引起的零件加工变形提供了重要参考。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Geeenough GB. Internal stresses in metals. Nature 1948;161(4096):683. 链接1

[ 2 ] Wang YM, Voisin T, McKeown JT, Ye J, Calta NP, Li Z, et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater 2018;17:63‒71. 链接1

[ 3 ] Xu Y, Joseph S, Karamched P, Fox K, Rugg D, Dunne FPE, et al. Predicting dwell fatigue life in titanium alloys using modelling and experiment. Nat Commun 2020;11:5868. 链接1

[ 4 ] Li Y, Shi Z, Lin J, Yang YL, Saillard P, Said R. Effect of machining-induced residual stress on springback of creep age formed AA2050 plates with asymmetric creep-ageing behaviour. Int J Mach Tools Manuf 2018;132:113‒22. 链接1

[ 5 ] Yuan S. Fundamentals and processes of fluid pressure forming technology for complex thin-walled components. Engineering 2021;7(3):358‒66. 链接1

[ 6 ] Lu Y, Sun G, Xiao X, Mazumder J. Online stress measurement during laser-aided metallic additive manufacturing. Sci Rep 2019;9:7630. 链接1

[ 7 ] Withers PJ, Bhadeshia HKDH. Residual stress. Part 1‒measurement techniques. Mater Sci Technol 2001;17(4):355‒65. 链接1

[ 8 ] Prime MB, Hill MR. Residual stress, stress relief, and inhomogeneity in aluminum plate. Scr Mater 2002;46(1):77‒82. 链接1

[ 9 ] Prime MB. Cross-sectional mapping of residual stresses by measuring the surface contour after a cut. J Eng Mater Technol 2001;123(2):162‒8. 链接1

[10] Treuting RG, Read WT. A mechanical determination of biaxial residual stress in sheet materials. J Appl Phys 1951;22(2):130‒4. 链接1

[11] Wong AK, Dunn SA, Sparrow JG. Residual stress measurement by means of the thermoelastic effect. Nature 1988;332(6165):613‒5. 链接1

[12] Lu L, Dao M, Kumar P, Ramamurty U, Karniadakis GE, Suresh S. Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proc Natl Acad Sci USA 2020;117(13):7052‒62. 链接1

[13] Kirchlechner C, Martinschitz KJ, Daniel R, Mitterer C, Donges J, Rothkirch A, et al. X-ray diffraction analysis of three-dimensional residual stress fields reveals origins of thermal fatigue in uncoated and coated steel. Scr Mater 2010;62(10):774‒7. 链接1

[14] Fratini L, Zuccarello B. An analysis of through-thickness residual stresses in aluminium FSW butt joints. Int J Mach Tools Manuf 2006;46(6):611‒9. 链接1

[15] Shen X, Zhang D, Yao C, Tan L, Yao H. Formation mechanism of surface metamorphic layer and influence rule on milling TC17 titanium alloy. Int J Adv Manuf Technol 2021;112(7‒8):2259‒76.

[16] Zhang Y, Chen S, Cai Y, Lu L, Fan D, Shi J, et al. Novel X-ray and optical diagnostics for studying energetic materials: a review. Engineering 2020;6(9):992‒1005. 链接1

[17] Jiang W, Woo W, An GB, Park JU. Neutron diffraction and finite element modeling to study the weld residual stress relaxation induced by cutting. Mater Des 2013;51:415‒20. 链接1

[18] Singh DRP, Deng X, Chawla N, Bai J, Hubbard C, Tang G, et al. Residual stress characterization of Al/SiC nanoscale multilayers using X-ray synchrotron radiation. Thin Solid Films 2010;519(2):759‒65. 链接1

[19] Chen H, Wang XL. China’s first pulsed neutron source. Nat Mater 2016;15(7):689‒91. 链接1

[20] Spradlin TJ, Olson MD. Comparison of residual stress measurements from multiple techniques in die-forged 7085-T7452. In: Proceedings of the 2017 Residual Stress Summit; 2017 Oct 23‒26; Dayton, OH, USA. 2017. p. 1‒32.

[21] Schajer GS. Practical residual stress measurement methods. Wiley; 2013. 链接1

[22] Zhao Z, Li Y, Liu C, Liu X. Predicting part deformation based on deformation force data using physics-informed latent variable model. Robot Comput Integr Manuf 2021;72:102204. 链接1

[23] Cerutti X, Mocellin K. Influence of the machining sequence on the residual stress redistribution and machining quality: analysis and improvement using numerical simulations. Int J Adv Manuf Technol 2016;83(1‒4):489‒503.

[24] Hao X, Li Y, Chen G, Liu C. 6+X locating principle based on dynamic mass centers of structural parts machined by responsive fixtures. Int J Mach Tools Manuf 2018;125:112‒22. 链接1

[25] Li Y, Liu C, Hao X, Gao JX, Maropoulos PG. Responsive fixture design using dynamic product inspection and monitoring technologies for the precision machining of large-scale aerospace parts. CIRP Ann Manuf Technol 2015;64(1):173‒6. 链接1

相关研究