期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第1期 doi: 10.15302/J-ENG-2015014

陶瓷喷墨打印增材制造技术

School of Materials, University of Manchester, Manchester, M13 9PL, UK

收稿日期 :2015-03-02 修回日期 :2015-03-25 录用日期 : 2015-03-27 发布日期 :2015-03-31

下一篇 上一篇

摘要

陶瓷喷墨打印是一种基于微滴累加的成形技术,典型的微滴体积为10~100 pL。实现微滴累加成形的关键是开发稳定的陶瓷墨水,合适的墨水需要满足由雷诺数和韦伯数定义的流变特性参数空间。在微滴累加成形过程中,微滴首先与成形面碰撞变形并消耗动能,然后在毛细管力作用下铺展并达到平衡状态。已经可以确定的是打印过程中微滴相互作用并形成一维线性特征的机理,但是对二维和三维结构成形机理的认识还处于较低水平,成形二维面的稳定性低于成形一维线性结构。多数情况下,墨水通过蒸发固化,微滴碰撞基体所产生的“咖啡环”缺陷需要通过固化工艺加以控制。已经有大量文献报道了使用喷墨打印技术成形各种类型小型陶瓷零件的成功案例。作为一种未来的制造技术,陶瓷喷墨打印技术有广阔的应用前景。本综述的目的是探索陶瓷喷墨打印技术未来潜在的研究领域,加强对这种制造方法的理解。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[1]  E. Sachs, M. Cima, P. Williams, D. Brancazio, J. Cornie. Three dimensional printing: Rapid tooling and prototypes directly from a CAD model. J. Manuf. Sci. Eng., 1992, 114(4): 481–488

[2]  Q. F. Xiang, J. R. G. Evans, M. J. Edirisinghe, P. F. Blazdell. Solid freeforming of ceramics using a drop-on-demand jet printer. Proc. Inst. Mech. Eng. J. Eng. Manuf., 1997, 211(3): 211–214 链接1

[3]  C. Ainsley, N. Reis, B. Derby. Freeform fabrication by controlled droplet deposition of powder filled melts. J. Mater. Sci., 2002, 37(15): 3155–3161

[4]  M. Mott, J. R. G. Evans. Zirconia/alumina functionally graded material made by ceramic ink jet printing. Mater. Sci. Eng. A, 1999, 271(1¯2): 344–352 链接1

[5]  B. Y. Tay, J. R. G. Evans, M. J. Edirisinghe. Solid freeform fabrication of ceramics. Int. Mater. Rev., 2003, 48(6): 341–370 链接1

[6]  B. Derby, N. Reis. Inkjet printing of highly loaded particulate suspensions. MRS Bull., 2003, 28(11): 815–818 链接1

[7]  B. Derby. Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res., 2010, 40(1): 395–414 链接1

[8]  B. Derby. Inkjet printing ceramics: From drops to solid. J. Eur. Ceram. Soc., 2011, 31(14): 2543–2550

[9]  W. Thomson. Improvements in receiving or recording instruments for electric telegraphs. UK patent 2147, 1867−723

[10]  R. Elmqvist. Measuring instrument of the recording type. USA patent US2566443 A, 1951−94

[11]  T. Shimoda, K. Morii, S. Seki, H. Kiguchi. Inkjet printing of light-emitting polymer displays. MRS Bull., 2003, 28(11): 821–827 链接1

[12]  J. Perelaer, Printed electronics: The challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem., 2010, 20(39): 8446–8453 链接1

[13]  K. A. M. Seerden, N. Reis, J. R. G. Evans, P. S. Grant, J. W. Halloran, B. Derby. Ink-jet printing of wax-based alumina suspensions. J. Am. Ceram. Soc., 2001, 84(11): 2514–2520

[14]  B. Derby. Printing and prototyping of tissues and scaffolds. Science, 2012, 338(6109): 921–926 链接1

[15]  P. F. Blazdell, J. R. G. Evans. Application of a continuous ink jet printer to solid freeforming of ceramics. J. Mater. Process. Technol., 2000, 99(1¯3): 94–102 链接1

[16]  G. D. Martin, S. D. Hoath, I. M. Hutchings. Inkjet printing—The physics of manipulating liquid jets and drops. J. Phys. Conf. Ser., 2008, 105(1): 012001

[17]  S. Umezu, H. Suzuki, H. Kawamoto. Droplet formation and diropping position control in electrostatic inkjet phenomena. In: IS&T’S NIP21: International Conference on Digital Printing Technologies, Final Program and Proceedings, 2005: 283–286

[18]  C. E. Slade, J. R. G. Evans. Freeforming ceramics using a thermal jet printer. J. Mater. Sci. Lett., 1998, 17(19): 1669–1671

[19]  M. Mott, J. H. Song, J. R. G. Evans. Microengineering of ceramics by direct ink-jet printing. J. Am. Ceram. Soc., 1999, 82(7): 1653–1658

[20]  J. Windle, B. Derby. Ink jet printing of PZT aqueous ceramic suspensions. J. Mater. Sci. Lett., 1999, 18(2): 87–90

[21]  P. Smith, B. Derby, N. Reis, A. Wallwork, C. Ainsley. Measured anisotropy of alumina components produced by direct ink-jet printing. Key Eng. Mater., 2004, 264¯268: 693–696

[22]  T. M. Wang, B. Derby. Ink-jet printing and sintering of PZT. J. Am. Ceram. Soc., 2005, 88(8): 2053–2058

[23]  R. Noguera, M. Lejeune, T. Chartier. 3D fine scale ceramic components formed by ink-jet prototyping process. J. Eur. Ceram. Soc., 2005, 25(12): 2055–2059

[24]  B. Cappi, E. Özkol, J. Ebert, R. Telle. Direct inkjet printing of Si3N4: Characterization of ink, green bodies and microstructure. J. Eur. Ceram. Soc., 2008, 28(13): 2625–2628

[25]  E. Özkol, J. Ebert, K. Uibel, A. M. Wätjen, R. Telle. Development of high solid content aqueous 3Y-TZP suspensions for direct inkjet printing using a thermal inkjet printer. J. Eur. Ceram. Soc., 2009, 29(3): 403–409

[26]  J. E. Fromm. Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J. Res. Develop., 1984, 28(3): 322–333 链接1

[27]  N. Reis, B. Derby. Ink jet deposition of ceramic suspensions: Modeling and experiments of droplet Formation. In: S. C. Danforth, D. B. Dimos, F. Prinz, eds. Solid Freeform and Additive Fabrication, 2000: 117–122

[28]  B. W. Jo, A. Lee, K. H. Ahn, S. J. Lee. Evaluation of jet performance in drop-on-demand (DOD) inkjet printing. Korean J. Chem. Eng., 2009, 26(2): 339–348

[29]  D. Jang, D. Kim, J. Moon. Influence of fluid physical properties on ink-jet printability. Langmuir, 2009, 25(5): 2629–2635 链接1

[30]  P. C. Duineveld, Ink-jet printing of polymer light-emitting devices. In: Z. H. Kafafi, ed. Proc. SPIE 4464, Organic Light-Emitting Materials and Devices V, 2002: 59–67

[31]  C. D. Stow, M. G. Hadfield. An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proc. R. Soc. Lond. A Math. Phys. Sci., 1981, 373(1755): 419–441

[32]  R. Bhola, S. Chandra. Parameters controlling solidification of molten wax droplets falling on a solid surface. J. Mater. Sci., 1999, 34(19): 4883–4894 链接1

[33]  E. I. Haskal, 21.1: Ink jet printing of passive-matrix polymer light emitting displays. SID Symp. Digest Tech. Papers, 2002, 33(1): 776–779 链接1

[34]  D. Xu, Inkjet printing of polymer solutions and the role of chain entanglement. J. Mater. Chem., 2007, 17(46): 4902–4907

[35]  B. V. Antohe, D. B. Wallace. Acoustic phenomena in a demand mode piezoelectric ink jet printer. J. Imaging Sci. Technol., 2002, 46(5): 409–414

[36]  N. Reis, C. Ainsley, B. Derby. Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. J. Appl. Phys., 2005, 97(9): 094903

[37]  N. Reis, C. Ainsley, B. Derby. Viscosity and acoustic behavior of ceramic suspensions optimized for phase-change ink-jet printing. J. Am. Ceram. Soc., 2005, 88(4): 802–808

[38]  A. L. Yarin. Drop impact dynamics: Splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 2006, 38, 159–192 链接1

[39]  S. H. Davis. Moving contact lines and rivulet instabilities. Part 1. The static rivulet. J. Fluid Mech., 1980, 98(2): 225–242 链接1

[40]  S. Schiaffino, A. A. Sonin. Formation and stability of liquid and molten beads on a solid surface. J. Fluid Mech., 1997, 343: 95–110 链接1

[41]  D. Soltman, V. Subramanian. Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir, 2008, 24(5): 2224–2231 链接1

[42]  P. J. Smith, D. Y. Shin, J. E. Stringer, B. Derby, N. Reis. Direct ink-jet printing and low temperature conversion of conductive silver patterns. J. Mater. Sci., 2006, 41(13): 4153–4158 链接1

[43]  J. Stringer, B. Derby. Limits to feature size and resolution in ink jet printing. J. Eur. Ceram. Soc., 2009, 29(5): 913–918

[44]  J. Stringer, B. Derby. Formation and stability of lines produced by inkjet printing. Langmuir, 2010, 26(12): 10365–10372 链接1

[45]  P. C. Duineveld. The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate. J. Fluid Mech., 2003, 477: 175–200

[46]  R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten. Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997, 389(6653): 827–829 链接1

[47]  R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten. Contact line deposits in an evaporating drop. Phys. Rev. E., 2000, 62(1): 756–765

[48]  R. Dou, T. Wang, Y. Guo, B. Derby. Inkjet printing of zirconia: Coffee staining and line stability. J. Am. Ceram. Soc., 2011, 94(11): 3787–3792

[49]  B. J. de Gans, U. S. Schubert. Inkjet printing of well-defined polymer dots and arrays. Langmuir, 2004, 20(18): 7789–7793 链接1

[50]  Y. Zhang, S. Yang, L. Chen, J. R. G. Evans. Shape changes during the drying of droplets of suspensions. Langmuir, 2008, 24(8): 3752–3758 链接1

[51]  H. Hu, R. G. Larson. Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir, 2005, 21(9): 3972–3980 链接1

[52]  M. Di Biase, R. E. Saunders, N. Tirelli, B. Derby. Inkjet printing and cell seeding thermoreversible photocurable gel structures. Soft Matter, 2011, 7: 2639–2646 链接1

[53]  E. Tekin, B. J. de Gans, U. S. Schubert. Ink-jet printing of polymers—From single dots to thin film libraries. J. Mater. Chem., 2004, 14(17): 2627–2632

[54]  H. Kang, D. Soltman, V. Subramanian. Hydrostatic optimization of inkjet-printed films. Langmuir, 2010, 26(13): 11568–11573 链接1

[55]  D. Soltman, B. Smith, H. Kang, S. J. S. Morris, V. Subramanian, Methodology for inkjet printing of partially wetting films. Langmuir, 2010, 26: 15686–15693

[56]  R. Dou, B. Derby. Formation of coffee stains on porous surfaces. Langmuir, 2012, 28(12): 5331–5338 链接1

[57]  I. M. Hutchings. Ink-jet printing for the decoration of ceramic tiles: technology and opportunities. In: Qualicer ´10, 11th World Congress on Ceramic Tile Quality. Castellon, Spain, 2010

[58]  R. van Noort. The future of dental devices is digital. Dental Materials, 2012, 28: 3–12 链接1

[59]  J. Ebert, Direct inkjet printing of dental prostheses made of zirconia. J. Dental Res., 2009, 88: 673–676

相关研究