期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第1期 doi: 10.15302/J-ENG-2015015

组织工程和给药技术中的三维光制造

1 Centre for Rapid and Sustainable Product Development (CDRsp), Polytechnic Institute of Leiria, Marinha Grande 2430-028, Portugal
2 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto 4200-393, Portugal
3 Instituto Nacional de Engenharia Biomédica (INEB), Universidade do Porto, Porto 4150-180, Portugal
4 Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-313, Portugal
5 School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
6 Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK

收稿日期: 2015-03-05 修回日期: 2015-03-25 录用日期: 2015-03-25 发布日期: 2015-03-31

下一篇 上一篇

摘要

组织工程中最有前景的方法就是将生物材料、细胞和生物活性分子结合加入人工的模拟环境,用以准确地模拟人体组织修复环境,并刺激组织修复和再生。这个环境必须在细胞或亚细胞尺度上模拟出尽可能接近原生细胞外基质的主要特性,只有这样此方法才会在临床应用上有效。光制造技术通过多层工艺,如对光敏预聚物的选区光交联反应,构建包含精确结构和多相材料组合的环境。细胞和治疗分子可以包含在初始水凝胶前体的溶液中,并加工成三维(3D)结构。近来,光制造也已被开发用来动态调节水凝胶的实时特性,加强控制细胞寿命和生物活性物质的传递。本文聚焦于利用3D光制造技术为组织再生和给药技术生产先进结构的相关研究,同时介绍了目前最先进的光制造技术,重点放在控制细胞生物活性因子分布形式的工作原理和生物制造方法上。因光制造技术具有工艺快速、时空控制、高分辨率和高精度等特性,故其在复杂的3D结构设计中扮演着重要角色。这种技术同样能够为组织再生构建适当的环境,并可调节治疗方法的实施状况。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

参考文献

[ 1 ] F. P. W. Melchels, M. A. N. Domingos, T. J. Klein, J. Malda, P. J. Bartolo, D. W. Hutmacher. Additive manufacturing of tissues and organs. Prog. Polym. Sci., 2012, 37(8): 1079–1104 链接1

[ 2 ] A. Ranga, M. P. Lutolf. High-throughput approaches for the analysis of extrinsic regulators of stem cell fate. Curr. Opin. Cell Biol., 2012, 24(2): 236–244 链接1

[ 3 ] A. Khademhosseini, R. Langer, J. Borenstein, J. P. Vacanti. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U.S.A., 2006, 103(8): 2480–2487 链接1

[ 4 ] R. S. Tuan, G. Boland, R. Tuli. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res. Ther., 2003, 5(1): 32–45

[ 5 ] D. J. Newman, G. M. Cragg. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3): 311–335 链接1

[ 6 ] P. X. Ma. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev., 2008, 60(2): 184–198 链接1

[ 7 ] R. F. Pereira, C. C. Barrias, P. L. Granja, P. J. Bartolo. Advanced biofabrication strategies for skin regeneration and repair. Nanomedicine (Lond), 2013, 8(4): 603–621 链接1

[ 8 ] R. Passier, L. W. van Laake, C. L. Mummery. Stem-cell-based therapy and lessons from the heart. Nature, 2008, 453(7193): 322–329 链接1

[ 9 ] R. S. Kirsner, W. A. Marston, R. J. Snyder, T. D. Lee, D. I. Cargill, H. B. Slade. Spray-applied cell therapy with human allogeneic fibroblasts and keratinocytes for the treatment of chronic venous leg ulcers: A phase 2, multicentre, double-blind, randomised, placebo-controlled trial. Lancet, 2012, 380(9846): 977–985 链接1

[10] P. J. Bártolo, C. K. Chua, H. A. Almeida, S. M. Chou, A. S. C. Lim. Biomanufacturing for tissue engineering: Present and future trends. Virtual Phys. Prototyp., 2009, 4(4): 203–216 链接1

[11] D. W. Hutmacher. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000, 21(24): 2529–2543 链接1

[12] D. Puppi, F. Chiellini, A. M. Piras, E. Chiellini. Polymeric materials for bone and cartilage repair. Prog. Polym. Sci., 2010, 35(4): 403–440 链接1

[13] H. Cao, N. Kuboyama. A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone, 2010, 46(2): 386–395 链接1

[14] N. T. Khanarian, N. M. Haney, R. A. Burga, H. H. Lu. A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials, 2012, 33(21): 5247–5258 链接1

[15] F. P. W. Melchels, The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials, 2011, 32(11): 2878–2884 链接1

[16] J. W. Lee, K. S. Kang, S. H. Lee, J. Y. Kim, B. K. Lee, D. W. Cho. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials, 2011, 32(3): 744–752 链接1

[17] K. Kim, D. Dean, J. Wallace, R. Breithaupt, A. G. Mikos, J. P. Fisher. The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials, 2011, 32(15): 3750–3763 链接1

[18] P. Bajaj, R. M. Schweller, A. Khademhosseini, J. L. West, R. Bashir. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu. Rev. Biomed. Eng., 2014, 16(1): 247–276 链接1

[19] R. F. Pereira, P. J. Bártolo. Recent advances in additive biomanufacturing. In: S. H. Masood, ed. Comprehensive Materials Processing, Volume 10: Advances in Additive Manufacturing and Tooling. Oxford: Elsevier, 2014: 265–284

[20] V. Mironov, R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, R. R. Markwald. Organ printing: Tissue spheroids as building blocks. Biomaterials, 2009, 30(12): 2164–2174 链接1

[21] J. W. Nichol, A. Khademhosseini. Modular tissue engineering: Engineering biological tissues from the bottom up. Soft Matter, 2009, 5(7): 1312–1319 链接1

[22] S. V. Murphy, A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol., 2014, 32(8): 773–785 链接1

[23] Y. B. Lee, Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol., 2010, 223(2): 645–652 链接1

[24] M. P. Lutolf. Materials science: Cell environments programmed with light. Nature, 2012, 482(7386): 477–478 链接1

[25] K. T. Nguyen, J. L. West. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 2002, 23(22): 4307–4314 链接1

[26] I. Mironi-Harpaz, D. Y. Wang, S. Venkatraman, D. Seliktar. Photopolymerization of cell-encapsulating hydrogels: Crosslinking efficiency versus cytotoxicity. Acta Biomater., 2012, 8(5): 1838–1848 链接1

[27] C. A. DeForest, B. D. Polizzotti, K. S. Anseth. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater., 2009, 8(8): 659–664 链接1

[28] K. A. Mosiewicz, In situ cell manipulation through enzymatic hydrogel photopatterning. Nat. Mater., 2013, 12(11): 1072–1078 链接1

[29] R. F. Pereira, P. J. Bártolo. Photopolymerizable hydrogels in regenerative medicine and drug delivery. In: Hot Topics in Biomaterials. London: Future Science Ltd., 2014: 6–28

[30] M. A. Azagarsamy, K. S. Anseth. Bioorthogonal click chemistry: An indispensable tool to create multifaceted cell culture scaffolds. ACS Macro Lett., 2013, 2(1): 5–9 链接1

[31] M. K. Nguyen, E. Alsberg. Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog. Polym. Sci., 2014, 39(7): 1235–1265 链接1

[32] K. M. C. Tsang, Facile one-step micropatterning using photodegradable gelatin hydrogels for improved cardiomyocyte organization and alignment. Adv. Funct. Mater., 2015, 25(6): 977–986 链接1

[33] F. Guillemot, High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater., 2010, 6(7): 2494–2500 链接1

[34] C. C. Lin, C. S. Ki, H. Shih. Thiol-norbornene photo-click hydrogels for tissue engineering applications. J. Appl. Polym. Sci., 2015, 132(8): 41563

[35] N. Annabi, 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv. Mater., 2014, 26(1): 85–124 链接1

[36] S. B. Anderson, C. C. Lin, D. V. Kuntzler, K. S. Anseth. The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials, 2011, 32(14): 3564–3574 链接1

[37] F. R. Maia, K. B. Fonseca, G. Rodrigues, P. L. Granja, C. C. Barrias. Matrix-driven formation of mesenchymal stem cell-extracellular matrix microtissues on soft alginate hydrogels. Acta Biomater., 2014, 10(7): 3197–3208 链接1

[38] M. W. Tibbitt, A. M. Kloxin, L. Sawicki, K. S. Anseth. Mechanical properties and degradation of chain and step polymerized photodegradable hydrogels. Macromolecules, 2013, 46(7): 2785–2792 链接1

[39] C. E. Hoyle, C. N. Bowman. Thiol-ene click chemistry. Angew. Chem. Int. Ed. Engl., 2010, 49(9): 1540–1573

[40] Y. Jiang, J. Chen, C. Deng, E. J. Suuronen, Z. Zhong. Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials, 2014, 35(18): 4969–4985 链接1

[41] M. A. Tasdelen, Y. Yagci. Light-induced click reactions. Angew. Chem. Int. Ed. Engl., 2013, 52(23): 5930–5938

[42] K. A. Kyburz, K. S. Anseth. Three-dimensional hMSC motility within peptide-functionalized PEG-based hydrogels of varying adhesivity and crosslinking density. Acta Biomater., 2013, 9(5): 6381–6392 链接1

[43] H. Shih, C. C. Lin. Visible-light-mediated thiol-ene hydrogelation using eosin-Y as the only photoinitiator. Macromol. Rapid Commun., 2013, 34(3): 269–273 链接1

[44] B. D. Fairbanks, M. P. Schwartz, A. E. Halevi, C. R. Nuttelman, C. N. Bowman, K. S. Anseth. A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv. Mater., 2009, 21(48): 5005–5010 链接1

[45] P. J. Bártolo. Stereolithographic processes. In: P. J. Bártolo, ed. Stereolithography. New York: Springer US, 2011: 1–36

[46] N. E. Fedorovich, M. H. Oudshoorn, D. van Geemen, W. E. Hennink, J. Alblas, W. J. Dhert. The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials, 2009, 30(3): 344–353 链接1

[47] A. D. Rouillard, Methods for photocrosslinking alginate hydrogel scaffolds with high cell viability. Tissue Eng. Part C Methods, 2011, 17(2): 173–179

[48] S. J. Bryant, C. R. Nuttelman, K. S. Anseth. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed., 2000, 11(5): 439–457

[49] C. G. Williams, A. N. Malik, T. K. Kim, P. N. Manson, J. H. Elisseeff. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials, 2005, 26(11): 1211–1218 链接1

[50] T. Billiet, E. Gevaert, T. De Schryver, M. Cornelissen, P. Dubruel. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 2014, 35(1): 49–62 链接1

[51] B. D. Fairbanks, M. P. Schwartz, C. N. Bowman, K. S. Anseth. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: Polymerization rate and cytocompatibility. Biomaterials, 2009, 30(35): 6702–6707 链接1

[52] Z. Li, Initiation efficiency and cytotoxicity of novel water-soluble two-photon photoinitiators for direct 3D microfabrication of hydrogels. RSC Adv., 2013, 3(36): 15939–15946 链接1

[53] J. Hu, Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomater., 2012, 8(5): 1730–1738 链接1

[54] J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, A. Khademhosseini. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 2010, 31(21): 5536–5544 链接1

[55] W. M. Gramlich, I. L. Kim, J. A. Burdick. Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials, 2013, 34(38): 9803–9811 链接1

[56] A. Fu, K. Gwon, M. Kim, G. Tae, J. A. Kornfield. Visible-light-initiated thiol-acrylate photopolymerization of heparin-based hydrogels. Biomacromolecules, 2015, 16(2): 497–506 链接1

[57] A. K. Nguyen, Two-photon polymerization of polyethylene glycol diacrylate scaffolds with riboflavin and triethanolamine used as a water-soluble photoinitiator. Regen. Med., 2013, 8(6): 725–738 链接1

[58] H. Park, B. Choi, J. Hu, M. Lee. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater., 2013, 9(1): 4779–4786 链接1

[59] P. M. Kharkar, K. L. Kiick, A. M. Kloxin. Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem. Soc. Rev., 2013, 42(17): 7335–7372

[60] J. A. Yang, J. Yeom, B. W. Hwang, A. S. Hoffman, S. K. Hahn. In situ-forming injectable hydrogels for regenerative medicine. Prog. Polym. Sci., 2014, 39(12): 1973–1986 链接1

[61] M. P. Lutolf, J. A. Hubbell. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol., 2005, 23(1): 47–55 链接1

[62] L. Fertier, The use of renewable feedstock in UV-curable materials–A new age for polymers and green chemistry. Prog. Polym. Sci., 2013, 38(6): 932–962 链接1

[63] C. Heller, Vinylcarbonates and vinylcarbamates: Biocompatible monomers for radical photopolymerization. J. Polym. Sci. A Polym. Chem., 2011, 49(3): 650–661

[64] B. Husár, R. Liska. Vinyl carbonates, vinyl carbamates, and related monomers: Synthesis, polymerization, and application. Chem. Soc. Rev., 2012, 41(6): 2395–2405

[65] C. Heller, M. Schwentenwein, G. Russmueller, F. Varga, J. Stampfl, R. Liska. Vinyl esters: Low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing. J. Polym. Sci. A Polym. Chem., 2009, 47(24): 6941–6954

[66] J. F. Almeida, P. Ferreira, A. Lopes, M. H. Gil. Photocrosslinkable biodegradable responsive hydrogels as drug delivery systems. Int. J. Biol. Macromol., 2011, 49(5): 948–954 链接1

[67] O. Jeon, C. Powell, L. D. Solorio, M. D. Krebs, E. Alsberg. Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J. Control. Release, 2011, 154(3): 258–266 链接1

[68] S. Sahoo, C. Chung, S. Khetan, J. A. Burdick. Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures. Biomacromolecules, 2008, 9(4): 1088–1092 链接1

[69] S. A. Bencherif, A. Srinivasan, F. Horkay, J. O. Hollinger, K. Matyjaszewski, N. R. Washburn. Influence of the degree of methacrylation on hyaluronic acid hydrogels properties. Biomaterials, 2008, 29(12): 1739–1749 链接1

[70] C. S. Ki, H. Shih, C. C. Lin. Facile preparation of photodegradable hydrogels by photopolymerization. Polymer (Guildf.), 2013, 54(8): 2115–2122 链接1

[71] Q. Guo, X. Wang, M. W. Tibbitt, K. S. Anseth, D. J. Montell, J. H. Elisseeff. Light activated cell migration in synthetic extracellular matrices. Biomaterials, 2012, 33(32): 8040–8046 链接1

[72] M. A. Azagarsamy, D. D. McKinnon, D. L. Alge, K. S. Anseth. Coumarin-based photodegradable hydrogel: Design, synthesis, gelation, and degradation kinetics. ACS Macro Letters, 2014, 3(6): 515–519 链接1

[73] M. A. Azagarsamy, K. S. Anseth. Wavelength-controlled photocleavage for the orthogonal and sequential release of multiple proteins. Angew. Chem. Int. Ed. Engl., 2013, 52(51): 13803–13807

[74] N. Annabi, S. M. Mithieux, P. Zorlutuna, G. Camci-Unal, A. S. Weiss, A. Khademhosseini. Engineered cell-laden human protein-based elastomer. Biomaterials, 2013, 34(22): 5496–5505 链接1

[75] M. S. Bae, Photo-cured hyaluronic acid-based hydrogels containing simvastatin as a bone tissue regeneration scaffold. Biomaterials, 2011, 32(32): 8161–8171 链接1

[76] H. Zhang, Hyperbranched polyester hydrogels with controlled drug release and cell adhesion properties. Biomacromolecules, 2013, 14(5): 1299–1310 链接1

[77] Z. Mũnoz, H. Shih, C. C. Lin. Gelatin hydrogels formed by orthogonal thiol-norbornene photochemistry for cell encapsulation. Biomaterials Science, 2014, 2(8): 1063–1072 链接1

[78] K. Peng, Dextran based photodegradable hydrogels formed via a Michael addition. Soft Matter, 2011, 7(10): 4881–4887 链接1

[79] R. F. Pereira, H. A. Almeida, P. J. Bártolo. Biofabrication of hydrogel constructs. In: J. Coelho, ed. Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment. Dordrecht: Springer Netherlands, 2013: 225–254

[80] N. R. Schiele, D. T. Corr, Y. Huang, N. A. Raof, Y. Xie, D. B. Chrisey. Laser-based direct-write techniques for cell printing. Biofabrication, 2010, 2(3): 032001 链接1

[81] F. P. W. Melchels, J. Feijen, D. W. Grijpma. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010, 31(24): 6121–6130 链接1

[82] R. F. Pereira, P. J. Bártolo. Photocrosslinkable materials for the fabrication of tissue-engineered constructs by stereolithography. In: P. R. Fernandes, P. J. Bártolo, eds. Tissue Engineering. Dordrecht: Springer Netherlands, 2014: 149–178

[83] J. W. Choi, R. Wicker, S. H. Lee, K. H. Choi, C. S. Ha, I. Chung. Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J. Mater. Process. Technol., 2009, 209(15−16): 5494–5503 链接1

[84] J. Torgersen, X. H. Qin, Z. Li, A. Ovsianikov, R. Liska, J. Stampfl. Hydrogels for two-photon polymerization: A toolbox for mimicking the extracellular matrix. Adv. Funct. Mater., 2013, 23(36): 4542–4554 链接1

[85] P. J. Bártolo, G. Mitchell. Stereo-thermal-lithography: A new principle for rapid prototyping. Rapid Prototyping J., 2003, 9(3): 150–156 链接1

[86] T. Patrício, R. Pereira, L. Oliveira, P. Bártolo. Polyethylene glycol and polyethylene glycol/hydroxyapatite constructs produced through stereo-thermal lithography. Adv. Mater. Res., 2013, 749: 87–92

[87] P. Bartolo, Biomedical production of implants by additive electro-chemical and physical processes. CIRP Annals—Manuf. Technol., 2012, 61(2): 635–655

[88] Y. J. Seol, D. Y. Park, J. Y. Park, S. W. Kim, S. J. Park, D. W. Cho. A new method of fabricating robust freeform 3D ceramic scaffolds for bone tissue regeneration. Biotechnol. Bioeng., 2013, 110(5): 1444–1455 链接1

[89] J. R. Tumbleston, Continuous liquid interface production of 3D objects. Science, 2015, 347(6228), 1349–1352 链接1

[90] S. J. Leigh, Fabrication of 3-dimensional cellular constructs via microstereolithography using a simple, three-component, poly(ethylene glycol) acrylate-based system. Biomacromolecules, 2013, 14(1): 186–192 链接1

[91] A. P. Zhang, Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv. Mater., 2012, 24(31): 4266–4270 链接1

[92] A. Ovsianikov, Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules, 2011, 12(4): 851–858 链接1

[93] K. W. Lee, S. Wang, B. C. Fox, E. L. Ritman, M. J. Yaszemski, L. Lu. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: Effects of resin formulations and laser parameters. Biomacromolecules, 2007, 8(4): 1077–1084 链接1

[94] L. Elomaa, S. Teixeira, R. Hakala, H. Korhonen, D. W. Grijpma, J. V. Seppälä. Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomater., 2011, 7(11): 3850–3856 链接1

[95] F. P. W. Melchels, J. Feijen, D. W. Grijpma. A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials, 2009, 30(23−24): 3801–3809 链接1

[96] S. Schüller-Ravoo, S. M. Teixeira, J. Feijen, D. W. Grijpma, A. A. Poot. Flexible and elastic scaffolds for cartilage tissue engineering prepared by stereolithography using poly(trimethylene carbonate)-based resins. Macromol. Biosci., 2013, 13(12): 1711–1719 链接1

[97] J. W. Lee, P. X. Lan, B. Kim, G. Lim, D. W. Cho. Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology. J. Biomed. Mater. Res. B Appl. Biomater., 2008, 87B(1): 1–9 链接1

[98] J. Jansen, F. P. Melchels, D. W. Grijpma, J. Feijen. Fumaric acid monoethyl ester-functionalized poly(D,L-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography. Biomacromolecules, 2009, 10(2): 214–220 链接1

[99] T. M. Seck, F. P. Melchels, J. Feijen, D. W. Grijpma. Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins. J. Control. Release, 2010, 148(1): 34–41 链接1

[100] K. Arcaute, B. Mann, R. Wicker. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater., 2010, 6(3): 1047–1054 链接1

[101] F. A. M. M. Gonçalves, 3D printing of new biobased unsaturated polyesters by microstereo-thermal-lithography. Biofabrication, 2014, 6(3): 035024 链接1

[102] M. Dadsetan, Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Acta Biomater., 2015 (in press)

[103] J. H. Shin, J. W. Lee, J. H. Jung, D. W. Cho, G. Lim. Evaluation of cell proliferation and differentiation on a poly(propylene fumarate) 3D scaffold treated with functional peptides. J. Mater. Sci., 2011, 46(15): 5282–5287

[104] L. Elomaa, Y. Kang, J. V. Seppälä, Y. Yang. Biodegradable photocrosslinkable poly(depsipeptide-co-ε-caprolactone) for tissue engineering: Synthesis, characterization, and in vitro evaluation. J. Polym. Sci. A Polym. Chem., 2014, 52(23): 3307–3315

[105] R. Gauvin, Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 2012, 33(15): 3824–3834 链接1

[106] F. Scalera, C. Esposito Corcione, F. Montagna, A. Sannino, A. Maffezzoli. Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering. Ceram. Int., 2014, 40(10, Part A): 15455–15462 链接1

[107] L. Elomaa, A. Kokkari, T. Närhi, J. V. Seppälä. Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly(ε-caprolactone) by stereolithography. Compos. Sci. Technol., 2013, 74: 99–106 链接1

[108] A. Ronca, L. Ambrosio, D. W. Grijpma. Preparation of designed poly(D,L-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater., 2013, 9(4): 5989–5996 链接1

[109] F. Claeyssens, Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir, 2009, 25(5): 3219–3223 链接1

[110] O. Kufelt, A. El-Tamer, C. Sehring, S. Schlie-Wolter, B. N. Chichkov. Hyaluronic acid based materials for scaffolding via two-photon polymerization. Biomacromolecules, 2014, 15(2): 650–659 链接1

[111] V. Melissinaki, Direct laser writing of 3D scaffolds for neural tissue engineering applications. Biofabrication, 2011, 3(4): 045005 链接1

[112] M. T. Raimondi, Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing. Acta Biomater., 2013, 9(1): 4579–4584 链接1

[113] J. W. Lee, K. J. Kim, K. S. Kang, S. Chen, J. W. Rhie, D. W. Cho. Development of a bone reconstruction technique using a solid free-form fabrication (SFF)-based drug releasing scaffold and adipose-derived stem cells. J. Biomed. Mater. Res. A, 2013, 101A(7): 1865–1875

[114] J. Jansen, M. J. Boerakker, J. Heuts, J. Feijen, D. W. Grijpma. Rapid photo-crosslinking of fumaric acid monoethyl ester-functionalized poly(trimethylene carbonate) oligomers for drug delivery applications. J. Control. Release, 2010, 147(1): 54–61 链接1

[115] S. D. Gittard, Two photon polymerization-micromolding of polyethylene glycol-gentamicin sulfate microneedles. Adv. Eng. Mater., 2010, 12(4): B77–B82

[116] S. D. Gittard, Deposition of antimicrobial coatings on microstereolithography-fabricated microneedles. JOM, 2011, 63(6): 59–68

[117] Y. Lu, G. Mapili, G. Suhali, S. Chen, K. Roy. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J. Biomed. Mater. Res. A, 2006, 77A(2): 396–405

[118] P. Zorlutuna, J. H. Jeong, H. Kong, R. Bashir. Stereolithography-based hydrogel microenvironments to examine cellular interactions. Adv. Funct. Mater., 2011, 21(19): 3642–3651 链接1

[119] V. Chan, P. Zorlutuna, J. H. Jeong, H. Kong, R. Bashir. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip, 2010, 10(16): 2062–2070 链接1

[120] H. Lin, Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials, 2013, 34(2): 331–339 链接1

[121] A. Ovsianikov, Laser photofabrication of cell-containing hydrogel constructs. Langmuir, 2014, 30(13): 3787–3794 链接1

[122] A. Ovsianikov, Laser printing of cells into 3D scaffolds. Biofabrication, 2010, 2(1): 014104 链接1

[123] Y. Nahmias, D. J. Odde. Micropatterning of living cells by laser-guided direct writing: Application to fabrication of hepatic-endothelial sinusoid-like structures. Nat. Protoc., 2006, 1(5): 2288–2296 链接1

[124] B. R. Ringeisen, C. M. Othon, J. A. Barron, P. K. Wu, B. J. Spargo. The evolution of cell printing. In: U. Meyer, J. Handschel, H. P. Wiesmann, T. Meyer, eds. Fundamentals of Tissue Engineering and Regenerative Medicine. Berlin: Springer Berlin Heidelberg, 2009: 613–631

[125] D. J. Odde, M. J. Renn. Laser-guided direct writing of living cells. Biotechnol. Bioeng., 2000, 67(3): 312–318 链接1

[126] Y. Nahmias, R. E. Schwartz, C. M. Verfaillie, D. J. Odde. Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol. Bioeng., 2005, 92(2): 129–136 链接1

[127] F. Guillemot, A. Souquet, S. Catros, B. Guillotin. Laser-assisted cell printing: Principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine (Lond), 2010, 5(3): 507–515 链接1

[128] S. Catros, B. Guillotin, M. Bačáková, J. C. Fricain, F. Guillemot. Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by Laser-Assisted Bioprinting. Appl. Surf. Sci., 2011, 257(12): 5142–5147 链接1

[129] J. A. Barron, D. B. Krizman, B. R. Ringeisen. Laser printing of single cells: Statistical analysis, cell viability, and stress. Ann. Biomed. Eng., 2005, 33(2): 121–130 链接1

[130] Y. Lin, G. Huang, Y. Huang, T. R. Jeremy Tzeng, D. Chrisey. Effect of laser fluence in laser-assisted direct writing of human colon cancer cell. Rapid Prototyping J., 2010, 16(3): 202–208 链接1

[131] B. C. Riggs, Matrix-assisted pulsed laser methods for biofabrication. MRS Bull., 2011, 36(12): 1043–1050 链接1

[132] N. A. Raof, N. R. Schiele, Y. Xie, D. B. Chrisey, D. T. Corr. The maintenance of pluripotency following laser direct-write of mouse embryonic stem cells. Biomaterials, 2011, 32(7): 1802–1808 链接1

[133] J. A. Barron, B. R. Ringeisen, H. Kim, B. J. Spargo, D. B. Chrisey. Application of laser printing to mammalian cells. Thin Solid Films, 2004, 453−454: 383–387

[134] T. M. Patz, Three-dimensional direct writing of B35 neuronal cells. J. Biomed. Mater. Res. B Appl. Biomater., 2006, 78B(1): 124–130 链接1

[135] N. R. Schiele, D. B. Chrisey, D. T. Corr. Gelatin-based laser direct-write technique for the precise spatial patterning of cells. Tissue Eng. Part C Methods, 2011, 17(3): 289–298

[136] N. R. Schiele, Laser direct writing of combinatorial libraries of idealized cellular constructs: Biomedical applications. Appl. Surf. Sci., 2009, 255(10): 5444–5447 链接1

[137] A. Doraiswamy, R. J. Narayan, M. L. Harris, S. B. Qadri, R. Modi, D. B. Chrisey. Laser microfabrication of hydroxyapatite-osteoblast-like cell composites. J. Biomed. Mater. Res. A, 2007, 80A(3): 635–643

[138] S. Catros, Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication, 2011, 3(2): 025001 链接1

[139] M. Gruene, Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng. Part C Methods, 2011, 17(10): 973–982

[140] L. Koch, Skin tissue generation by laser cell printing. Biotechnol. Bioeng., 2012, 109(7): 1855–1863 链接1

[141] P. K. Wu, B. R. Ringeisen. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication, 2010, 2(1): 014111 链接1

[142] S. Michael, Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE, 2013, 8(3): e57741 链接1

[143] V. Keriquel, In vivo bioprinting for computer- and robotic-assisted medical intervention: Preliminary study in mice. Biofabrication, 2010, 2(1): 014101 链接1

[144] B. Guillotin, Laser-assisted bioprinting for tissue engineering. In: G. Forgacs, W. Sun, eds. Biofabrication. Boston: William Andrew Publishing, 2013: 95–118

[145] R. G. Wylie, S. Ahsan, Y. Aizawa, K. L. Maxwell, C. M. Morshead, M. S. Shoichet. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater., 2011, 10(10): 799–806 链接1

[146] R. G. Wylie, M. S. Shoichet. Three-dimensional spatial patterning of proteins in hydrogels. Biomacromolecules, 2011, 12(10): 3789–3796 链接1

[147] S. H. Lee, J. J. Moon, J. L. West. Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials, 2008, 29(20): 2962–2968 链接1

[148] S. C. Owen, S. A. Fisher, R. Y. Tam, C. M. Nimmo, M. S. Shoichet. Hyaluronic acid click hydrogels emulate the extracellular matrix. Langmuir, 2013, 29(24): 7393–7400 链接1

[149] K. A. Mosiewicz, L. Kolb, A. J. van der Vlies, M. P. Lutolf. Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols. Biomater. Sci., 2014, 2(11): 1640–1651 链接1

[150] A. T. Alsop, J. C. Pence, D. W. Weisgerber, B. A. Harley, R. C. Bailey. Photopatterning of vascular endothelial growth factor within collagen-glycosaminoglycan scaffolds can induce a spatially confined response in human umbilical vein endothelial cells. Acta Biomater., 2014, 10(11): 4715–4722 链接1

[151] R. J. Wade, E. J. Bassin, W. M. Gramlich, J. A. Burdick. Nanofibrous hydrogels with spatially patterned biochemical signals to control cell behavior. Adv. Mater., 2015, 27(8): 1356–1362 链接1

[152] H. J. Lee, W. G. Koh. Hydrogel micropattern-incorporated fibrous scaffolds capable of sequential growth factor delivery for enhanced osteogenesis of hMSCs. ACS Appl. Mater. Interfaces, 2014, 6(12): 9338–9348 链接1

[153] B. V. Sridhar, N. R. Doyle, M. A. Randolph, K. S. Anseth. Covalently tethered TGF-b1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production. J. Biomed. Mater. Res. A, 2014, 102(12): 4464–4472

[154] G. Pasparakis, T. Manouras, P. Argitis, M. Vamvakaki. Photodegradable polymers for biotechnological applications. Macromol. Rapid Commun., 2012, 33(3): 183–198 链接1

[155] M. T. Frey, Y. L. Wang. A photo-modulatable material for probing cellular responses to substrate rigidity. Soft Matter, 2009, 5(9): 1918–1924 链接1

[156] V. V. Ramanan, J. S. Katz, M. Guvendiren, E. R. Cohen, R. A. Marklein, J. A. Burdick. Photocleavable side groups to spatially alter hydrogel properties and cellular interactions. J. Mater. Chem., 2010, 20(40): 8920–8926

[157] D. R. Griffin, A. M. Kasko. Photodegradable macromers and hydrogels for live cell encapsulation and release. J. Am. Chem. Soc., 2012, 134(31): 13103–13107

[158] D. R. Griffin, J. T. Patterson, A. M. Kasko. Photodegradation as a mechanism for controlled drug delivery. Biotechnol. Bioeng., 2010, 107(6): 1012–1019 链接1

[159] M. He, J. Li, S. Tan, R. Wang, Y. Zhang. Photodegradable supramolecular hydrogels with fluorescence turn-on reporter for photomodulation of cellular microenvironments. J. Am. Chem. Soc., 2013, 135(50): 18718–18721

[160] C. A. DeForest, K. S. Anseth. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem., 2011, 3(12): 925–931 链接1

[161] A. M. Kloxin, J. A. Benton, K. S. Anseth. In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials, 2010, 31(1): 1–8 链接1

[162] C. M. Kirschner, D. L. Alge, S. T. Gould, K. S. Anseth. Clickable, photodegradable hydrogels to dynamically modulate valvular interstitial cell phenotype. Adv. Healthc. Mater., 2014, 3(5): 649–657 链接1

[163] M. V. Tsurkan, Photopatterning of multifunctional hydrogels to direct adult neural precursor cells. Adv. Healthc. Mater., 2015, 4(4): 516–521 链接1

[164] M. A. Azagarsamy, D. L. Alge, S. J. Radhakrishnan, M. W. Tibbitt, K. S. Anseth. Photocontrolled nanoparticles for on-demand release of proteins. Biomacromolecules, 2012, 13(8): 2219–2224 链接1

[165] M. W. Tibbitt, B. W. Han, A. M. Kloxin, K. S. Anseth. Synthesis and application of photodegradable microspheres for spatiotemporal control of protein delivery. J. Biomed. Mater. Res. A, 2012, 100A(7): 1647–1654

[166] C. Lv, Z. Wang, P. Wang, X. Tang. Photodegradable polyurethane self-assembled nanoparticles for photocontrollable release. Langmuir, 2012, 28(25): 9387–9394 链接1

[167] J. L. Vivero-Escoto, I. I. Slowing, C. W. Wu, V. S. Lin. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J. Am. Chem. Soc., 2009, 131(10): 3462–3463

[168] Q. Jin, F. Mitschang, S. Agarwal. Biocompatible drug delivery system for photo-triggered controlled release of 5-fluorouracil. Biomacromolecules, 2011, 12(10): 3684–3691 链接1

[169] B. Yan, J. C. Boyer, D. Habault, N. R. Branda, Y. Zhao. Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc., 2012, 134(40): 16558–16561

相关研究