期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第2期 doi: 10.15302/J-ENG-2015031

700 °C 及以上蒸汽温度下先进USC发电厂用耐热材料的研究和开发

National Institute for Materials Science, Tsukuba 305-0047, Japan

收稿日期 :2015-04-13 修回日期 :2015-06-26 录用日期 : 2015-06-30 发布日期 :2015-06-30

下一篇 上一篇

摘要

欧洲、美国、日本已开展蒸汽温度为700 °C 及以上的先进超超临界(A-USC) 发电厂用材料开发项目,以实现更高能效和低二氧化碳排放量。近年来中国、印度等也开展了上述项目的开发和研究。这些项目涉及采用镍基合金更换马氏体9%~12%Cr 钢以用于最高温度的锅炉和涡轮部件,从而在700 °C 及以上温度下提供充足的蠕变强度。为尽量减少对昂贵的镍基合金的需求,马氏体9%~12%Cr 钢可用于A-USC 电厂中的次高温部件(最高温度不超过650 °C)。本文综述了A-USC 电厂厚型材锅炉和涡轮部件用镍基合金和马氏体9%~12%Cr 钢的研究和开发,主要关注高温下基底金属和焊缝的长期蠕变断裂强度、焊缝强度损失、蠕变疲劳性质和显微结构演化。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

参考文献

[1]  F. Abe. Development of creep-resistant steels and alloys for use in power plants. In: A. Shirzadi, S. Jackson, eds. Structural Alloys in Power Plants: Operational Challenges and High-Temperature Materials. Cambridge, UK: Woodhead Publishing Limited, 2014: 250−293

[2]  R. Blum, R. W. Vanstone. Materials development for boilers and steam turbines operating at 700°C. In: Proceedings of the 6th International Charles Parsons Turbine Conference. Dublin, Ireland, 2003: 498−510

[3]  H. Tschaffon. The European way to 700°C coal fired power plant. In: Proceedings of the 8th Liege Conference on Materials for Advanced Power Engineering 2006. Liege, Belgium, 2006: 61−67

[4]  G. Gierschner, C. Ulrich, H. Tschaffon, F. Hansknecht. Latest developments for the flexible high efficient power plant of the future. In: Proceedings of the 38th MPA Seminar. Stuttgart, Germany, 2012: 353−373

[5]  K. Metzger, K. H. Czychon, K. Maile, A. Klenk, A. Helmrich, Q. Chen. GKM test rig: Investigation of the long term operation behavior of tubes and forgings made of alloys for future high efficient power plants. In: D. Gandy, J. Shingledecker, R. Viswanathan, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference. Materials Park, OH: ASM International, 2013: 86−95

[6]  A. Di Gianfrancesco, A. Tizzanini, M. Jedamzik, C. Stolzenberger. ENCIO project: An European approach to 700°C power plant. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 9−23

[7]  R. Viswanathan, J. F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis. U.S. program on materials technology for USC power plants. In: R. Viswanathan, D. Gandy, K. Coleman, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference. Materials Park, OH: ASM International, 2005: 3−19

[8]  R. Viswanathan, J. Shingledecker, J. Hawk, S. Goodstein. Effect of creep in advanced materials for use in ultrasupercritical coal power plants. In: I. A. Shibli, S. R. Holdsworth, eds. Creep & Fracture in High Temperature Components—Design & Life Assessment Issues: Proceedings of the 2nd ECCC Creep Conference. Lancaster, PA: DEStech Publications, Inc., 2009: 31−43

[9]  J. Shingledecker, R. Purgert, P. Rawls. Current status of the U.S. DOE/OCDO A-USC materials technology research and development program. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 41−52

[10]  M. Fukuda, Advanced USC technology development in Japan. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 24−40

[11]  R. Sun, Z. Cui, Y. Tao. Progress of China 700°C USC development program. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 1−8

[12]  Z. Liu, H. Bao, G. Yang, S. Xu, Q. Wang, Y. Yang. Material advancement used for 700°C A-USC-PP in China. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 171−179

[13]  A. Mathur, O. P. Bhutani, T. Jayakumar, D. K. Dubey, S. C. Chetal. India’s national A-USC mission—Plan and progress. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 53−59

[14]  F. Abe. Grade 91 heat-resistant martensitic steel. In: A. Shibli, ed. Coal Power Plant Materials and Life Assessment: Developments and Applications. Cambridge, UK: Woodhead Publishing Limited, 2014: 3−51

[15]  American Society of Mechanical Engineers. ASME Boiler and Pressure Vessel Code, Section II— Materials, Part D— Properties (Metric). New York: The American Society of Mechanical Engineers, 2013

[16]  F. Abe. Stress to produce minimum creep rate of 10−5%/h and stress to cause rupture at 105 h for ferritic and austenitic steels and superalloys. Int. J. Pres. Ves. Pip., 2008, 85(1−2): 99−107 链接1

[17]  X. Xie, S. Zhao, J. Dong, G. D. Smith, B. A. Baker, S. L. Patel. A new improvement of Inconel Alloy 740 for USC power plants. In: R. Viswanathan, D. Gandy, K. Coleman, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference. Materials Park, OH: ASM International, 2007: 220−230

[18]  S. Zhao, F. Lin, R. Fu, C. Chi, X. Xie. Microstructure evolution and precipitates stability in Inconel Alloy 740H during creep. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 265−275

[19]  S. K. Srivastava, J. L. Caron, L. M. Pike. Recent developments in the characteristics of Haynes 282 alloy for use in A-USC applications. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 120−130

[20]  M. Igarashi. Alloy design philosophy of creep-resistant steels. In: F. Abe, T. U. Kern, R. Viswanathan, eds. Creep-Resistant Steels. Cambridge, UK: Woodhead Publishing Limited, 2008: 539−572

[21]  H. Semba, H. Okada, M. Yonemura, M. Igarashi. Creep strength and microstructure in 23Cr-43Ni-7W alloy (HR6W) and Ni-base superalloys for advanced USC boilers. In: Proceedings of the 34th MPA Seminar. Stuttgart, Germany, 2008: 14.1−14.18

[22]  R. Yamamoto, Development of Ni-based superalloy for advanced 700°C-class steam turbines. In: R. Viswanathan, D. Gandy, K. Coleman, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference. Materials Park, OH: ASM International, 2007: 434−446

[23]  R. Yamamoto, Alloy design and material properties of Ni-based superalloy with low thermal expansion for steam turbine. Tetsu-to-Hagane, 2004, 90(1): 37−42

[24]  T. Ohno, Development of low thermal expansion Ni base superalloy for steam turbine applications. In: R. Viswanathan, D. Gandy, K. Coleman, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference. Materials Park, OH: ASM International, 2007: 377−390

[25]  S. Imano, J. Sato, K. Kajikawa, T. Takahashi. Mechanical properties and manufacturability of Ni-Fe base superalloy (FENIX-700) for A-USC steam turbine rotor large forgings. In: R. Viswanathan, D. Gandy, K. Coleman, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference. Materials Park, OH: ASM International, 2007: 424−433

[26]  S. Miyashita, M. Yamada, T. Suga, K. Imai, K. Nemoto, Y. Yoshioka. Development of a rotor alloy for advanced ultra super critical turbine power generation system. In: Proceedings of the 34th MPA Seminar. Stuttgart, Germany, 2008: 15.1−15.12

[27]  J. P. Shingledecker. Creep-rupture performance of Inconel Alloy 740 and welds. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 230−241

[28]  P. F. Tortorelli, K. A. Unocic, H. Wang, M. L. Santella, J. P. Shingledecker. Creep-rupture behavior of precipitation-strengthened Ni-based alloys under advanced ultrasupercritical steam conditions. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 131−142

[29]  J. P. Shingledecker, G. M. Pharr. Testing and analysis of full-scale creep-rupture experiments on Inconel Alloy 740 cold-formed tubing. J. Mater. Eng. Perform., 2013, 22(2): 454−462 链接1

[30]  J. Shingledecker. Creep-rupture behavior of Ni-based alloy tube bends for A-USC boilers. In: The Chinese Society for Metals (CSM) and the Minerals, Metals & Materials Society (TMS): Proceedings of Energy Materials 2014. Xi’an, China, 2014: 161−168

[31]  K. Kubushiro, K. Nomura, H. Nakagawa. Effect of cold work on creep strength of nickel base alloys. In: J. Lecomte-Beckers, O. Dedry, J. Oakey, B. Kuhn, eds. Proceedings of 10th Liege Conference on Materials for Advanced Power Engineering 2014. Liege, Belgium, 2014: 754−756

[32]  S. Zhang, Y. Takahashi. Evaluation of high temperature strength of a Ni-base Alloy 740H for advanced ultra-supercritical power plant. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 242−253

[33]  S. Chandra, R. Cotgrove, S. R. Holdsworth, M. Schwienheer, M. W. Spindler. Creep rupture data assessment of Alloy 617. In: Proceedings of ECCC Creep Conference: Creep and Fracture in High Temperature Components—Design and Life Assessment Issues. London, UK, 2005: 178−188

[34]  M. Speicher, A. Klenk, K. Maile, E. Roos. Investigations on advanced materials for 700°C steam power plant components. In: Proceedings of the 3rd Symposium on Heat Resistant Steels and Alloys for High Efficiency USC Power Plants 2009. Tsukuba, Japan, 2009

[35]  T. Uehara, C. Aoki, T. Ohno, P. Schraven, H. Kamoshida, S. Imano. Creep rupture properties of Ni-base superalloy USC141 as solution treated for 700°C class A-USC boiler. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 1407−1416

[36]  R. Yamamoto, Development and trial manufacturing of Ni-based superalloy “LTES700R” for advanced 700°C class steam turbines. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 468−481

[37]  K. Takasawa, T. Takahashi, R. Tanaka, T. Kure, S. Imano, E. Saito. Trial production and evaluation of 10-ton class A-USC turbine rotor of Ni-Fe base superalloy FENIX-700. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 1283−1291

[38]  S. Miyashita, Y. Yoshioka, T. Kubo. Development and evaluation of large-scale rotor forging for over 700°C-class A-USC steam turbine. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 436−447

[39]  Y. Noguchi, M. Miyahara, H. Okada, M. Igarashi, K. Ogawa. Creep-fatigue properties of Fe-Ni base 0.08C-23Cr-45Ni-7W alloy for piping in 700°C A-USC power plants. In: Proceedings of the Eighth International Conference on Creep and Fatigue at Elevated Temperatures. San Antonio, TX, USA, 2007: 261−266

[40]  H. Okada, T. Hamaguchi, H. Hirata, M. Yoshizawa. Development of HR6W and its applicability for thick-wall component for advanced USC boilers. In: Proceedings of the 40th MPA Seminar. Stuttgart, Germany, 2014: 137−146

[41]  F. Abe. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plant. Sci. Technol. Adv. Mater., 2008, 9(1): 013002 链接1

[42]  T. Sato, K. Tamura, Y. Fukuda, K. Asakura, T. Fujita. Development of low-C 9Cr steel for USC boilers. CAMP-ISIJ, 2006, 19: 565 (in Japanese)

[43]  K. Metzger, K. H. Czychon, E. Roos, K. Maile. Testing for the investigation of the damage mechanism of high-temperature for the 700°C power plant. In: Proceedings of the 34th MPA Seminar. Stuttgart, Germany, 2008: 48.1−48.12

[44]  M. Igarashi, Y. Sawaragi. Development of 0.1C-11Cr-3W-3Co-V-Nb-Ta-Nd-N ferritic steel for USC boilers. In: Proceedings of International Conference on Power Engineering-97 (ICOPE-97). Tokyo, Japan, 1997: 107−112

[45]  K. H. Mayer, F. Masuyama. The development of creep-resistant steels. In: F. Abe, T. U. Kern, R. Viswanathan, eds. Creep-Resistant Steels. Cambridge, UK: Woodhead Publishing Limited, 2008: 15−77

[46]  T. U. Kern, K. H. Mayer, B. Donth, G. Zeiler, A. Di Gianfrancesco. The European efforts in development of new high temperature rotor materials COST536. In: J. Lecomte-Beckers, Q. Contrepois, T. Beck, B. Kuhn, eds. Proceedings of 9th Liege Conference on Materials for Advanced Power Engineering 2010. Liege, Belgium, 2010: 27−36

[47]  P. Barnard, A new MarBN alloy for USC power plant. In: Proceedings of 5th Symposium on Heat Resistant Steels and Alloys for High Efficiency USC/A-USC Power Plants 2013. Seoul, Korea, 2013: 31

[48]  E. Zanin, Component performance-driven solutions for long-term efficiency increase in ultra supercritical power plants Macplus Project. In: J. Lecomte-Beckers, O. Dedry, J. Oakey, B. Kuhn, eds. Proceedings of 10th Liege Conference on Materials for Advanced Power Engineering 2014. Liege, Belgium, 2014: 803−819

[49]  C. Sommitsch, Co-ordination of European research in structural materials for power generation equipment. In: J. Lecomte-Beckers, O. Dedry, J. Oakey, B. Kuhn, eds. Proceedings of 10th Liege Conference on Materials for Advanced Power Engineering 2014. Liege, Belgium, 2014: 3−18

[50]  E. Plesiutschunig, C. Beal, S. Paul, G. Zeiler, S. Mitsche, C. Sommitsch. Microstructure for an optimized creep rupture strength of high Cr steels. In: J. Lecomte-Beckers, O. Dedry, J. Oakey, B. Kuhn, eds. Proceedings of 10th Liege Conference on Materials for Advanced Power Engineering 2014. Liege, Belgium, 2014: 180−188

[51]  P. Yan, Z. Liu, Y. Weng. Effect of preferential heat treatment on microstructure of new martensitic heat resistant steel G115. In:The Chinese Society for Metals (CSM) and the Minerals, Metals & Materials Society (TMS): Proceedings of Energy Materials 2014. Xi’an, China, 2014: 137−144

[52]  F. Abe. Effect of boron on long-term stability of 9Cr steel for 650°C boilers. In: Proceedings of the 38th MPA Seminar. Stuttgart, Germany, 2012: 305−314

[53]  F. Abe, M. Tabuchi, S. Tsukamoto. Alloy design of martensitic 9Cr-Boron steel for A-USC boiler at 650°C—Beyond Grades 91, 92 and 122. In: The Chinese Society for Metals (CSM) and the Minerals, Metals & Materials Society (TMS): Proceedings of Energy Materials 2014. Xi’an, China, 2014: 129−136

[54]  M. Tabuchi, H. Hongo, F. Abe. Creep strength of dissimilar welded joints using high B-9Cr steel for advanced USC boiler. Metall. Mater. Trans. A, 2014, 45(11): 5068−5075 链接1

[55]  Y. Gu, G. D. West, R. C. Thomson, J. Parker. Investigation of creep damage and cavitation mechanisms in P92 steels. In: D. Gandy, J. Shingledecker, eds. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference. Materials Park, OH: ASM International, 2013: 596−606

[56]  K. Sakuraya, H. Okada, F. Abe. BN type inclusions formed in high Cr ferritic heat resistant steel. Energy Materials, 2006, 1(3): 158−166 链接1

[57]  F. Abe, M. Tabuchi, S. Tsukamoto. Mechanisms for Boron effect on microstructure and creep strength of ferritic power plant steels. Energy Materials, 2009, 4(4): 166−174 链接1

[58]  H. Okubo, S. Muneki, T. Hara, H. Kutsumi, F. Abe. Improvement of oxidation resistance of 9% Cr steel for A-USC by pre-oxidation treatment. In: Proceedings of the 34th MPA Seminar. Stuttgart, Germany, 2008: 42.1−42.11

相关研究